Yanyan Zhou, Donghui Liu, Fengqiao Li, Yuanhua Dong, Zhili Jin, Yangwenke Liao, Xiaohui Li, Shuguang Peng, Manuel Delgado-Baquerizo, Xiaogang Li
{"title":"Superiority of native soil core microbiomes in supporting plant growth","authors":"Yanyan Zhou, Donghui Liu, Fengqiao Li, Yuanhua Dong, Zhili Jin, Yangwenke Liao, Xiaohui Li, Shuguang Peng, Manuel Delgado-Baquerizo, Xiaogang Li","doi":"10.1038/s41467-024-50685-3","DOIUrl":null,"url":null,"abstract":"<p>Native core microbiomes represent a unique opportunity to support food provision and plant-based industries. Yet, these microbiomes are often neglected when developing synthetic communities (SynComs) to support plant health and growth. Here, we study the contribution of native core, native non-core and non-native microorganisms to support plant production. We construct four alternative SynComs based on the excellent growth promoting ability of individual stain and paired non-antagonistic action. One of microbiome based SynCom (SC2) shows a high niche breadth and low average variation degree in-vitro interaction. The promoting-growth effect of SC2 can be transferred to non-sterile environment, attributing to the colonization of native core microorganisms and the improvement of rhizosphere promoting-growth function including nitrogen fixation, IAA production, and dissolved phosphorus. Further, microbial fertilizer based on SC2 and composite carrier (rapeseed cake fertilizer + rice husk carbon) increase the net biomass of plant by 129%. Our results highlight the fundamental importance of native core microorganisms to boost plant production.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-50685-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Native core microbiomes represent a unique opportunity to support food provision and plant-based industries. Yet, these microbiomes are often neglected when developing synthetic communities (SynComs) to support plant health and growth. Here, we study the contribution of native core, native non-core and non-native microorganisms to support plant production. We construct four alternative SynComs based on the excellent growth promoting ability of individual stain and paired non-antagonistic action. One of microbiome based SynCom (SC2) shows a high niche breadth and low average variation degree in-vitro interaction. The promoting-growth effect of SC2 can be transferred to non-sterile environment, attributing to the colonization of native core microorganisms and the improvement of rhizosphere promoting-growth function including nitrogen fixation, IAA production, and dissolved phosphorus. Further, microbial fertilizer based on SC2 and composite carrier (rapeseed cake fertilizer + rice husk carbon) increase the net biomass of plant by 129%. Our results highlight the fundamental importance of native core microorganisms to boost plant production.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.