On the constructivity of the variational approach to Arnold’s Diffusion

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alessandro Fortunati
{"title":"On the constructivity of the variational approach to Arnold’s Diffusion","authors":"Alessandro Fortunati","doi":"10.1016/j.physd.2024.134297","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to discuss the constructivity of the method originally introduced by U. Bessi to approach the phenomenon of topological instability commonly known as Arnold’s Diffusion. By adapting results and proofs from existing works and introducing additional tools where necessary, it is shown how, at least for a (well known) paradigmatic model, it is possible to obtain a rigorous proof on a suitable discrete space, which can be fully implemented on a computer. A selection of explicitly constructed diffusing trajectories for the system at hand is presented in the final section.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to discuss the constructivity of the method originally introduced by U. Bessi to approach the phenomenon of topological instability commonly known as Arnold’s Diffusion. By adapting results and proofs from existing works and introducing additional tools where necessary, it is shown how, at least for a (well known) paradigmatic model, it is possible to obtain a rigorous proof on a suitable discrete space, which can be fully implemented on a computer. A selection of explicitly constructed diffusing trajectories for the system at hand is presented in the final section.

论阿诺德扩散变分法的构造性
本文旨在讨论贝西(U. Bessi)最初提出的方法的构造性,以探讨通常被称为阿诺德扩散(Arnold's Diffusion)的拓扑不稳定性现象。通过改编现有著作中的结果和证明,并在必要时引入额外的工具,本文展示了至少对于一个(众所周知的)范例模型,如何能够在一个合适的离散空间上获得一个严格的证明,并且可以在计算机上完全实现。最后一节介绍了为当前系统明确构建的扩散轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信