Sung Hyup Hong, Byeongmo Seo, Ho Sung Jeon, Jong Min Choi, Kwang Ho Lee, Donghyun Rim
{"title":"Comparison of electricity savings in community units through ESS and PV generation using ANN-based prediction model under Korean climatic conditions","authors":"Sung Hyup Hong, Byeongmo Seo, Ho Sung Jeon, Jong Min Choi, Kwang Ho Lee, Donghyun Rim","doi":"10.1007/s12206-024-0739-z","DOIUrl":null,"url":null,"abstract":"<p>Electrical energy saving was evaluated by taking advantage of PV and ESS in a community unit. An artificial neural network (ANN) and long short-term memory (LSTM) were employed to create a predictive model for PV generation. Annual demand data for residential buildings were estimated using EnergyPlus, while data for other buildings were collected from measurements in J Energy Town, Republic of Korea. Pearson correlation coefficients identified six crucial variables for the model. Comparative analysis of 310 cases revealed that the best-performing model was an ANN with three hidden layers and nodes of 14, 13 and 11. The model satisfied ASHRAE guidelines with a CV(RMSE) of 29.1 % and NMBE of −7.14 %. Evaluating electricity consumption in the community, case B (PV generation) showed a significant 46.3 % reduction compared to case A, while case D achieved a 5 % energy savings relative to case E over the year.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":"30 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0739-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical energy saving was evaluated by taking advantage of PV and ESS in a community unit. An artificial neural network (ANN) and long short-term memory (LSTM) were employed to create a predictive model for PV generation. Annual demand data for residential buildings were estimated using EnergyPlus, while data for other buildings were collected from measurements in J Energy Town, Republic of Korea. Pearson correlation coefficients identified six crucial variables for the model. Comparative analysis of 310 cases revealed that the best-performing model was an ANN with three hidden layers and nodes of 14, 13 and 11. The model satisfied ASHRAE guidelines with a CV(RMSE) of 29.1 % and NMBE of −7.14 %. Evaluating electricity consumption in the community, case B (PV generation) showed a significant 46.3 % reduction compared to case A, while case D achieved a 5 % energy savings relative to case E over the year.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.