{"title":"On minimal surfaces in ℍ2 × ℝ space","authors":"Bendehiba Senoussi","doi":"10.1515/gmj-2024-2038","DOIUrl":null,"url":null,"abstract":"A surface is minimal if the mean curvature <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">ℋ</m:mi> <m:mi>mean</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2038_eq_0115.png\"/> <jats:tex-math>{\\mathcal{H}_{\\rm mean}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> vanishes everywhere. In this paper, we study some surfaces in the product space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℍ</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2038_eq_0102.png\"/> <jats:tex-math>{\\mathbb{H}^{2}\\times\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, we completely classify minimal surfaces.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A surface is minimal if the mean curvature ℋmean{\mathcal{H}_{\rm mean}} vanishes everywhere. In this paper, we study some surfaces in the product space ℍ2×ℝ{\mathbb{H}^{2}\times\mathbb{R}}. In particular, we completely classify minimal surfaces.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.