Discrepancies in dynamic yield stress measurements of cement pastes

IF 2.3 3区 工程技术 Q2 MECHANICS
Subhransu Dhar, Teresa Liberto, Catherine Barentin, Thibaut Divoux, Agathe Robisson
{"title":"Discrepancies in dynamic yield stress measurements of cement pastes","authors":"Subhransu Dhar, Teresa Liberto, Catherine Barentin, Thibaut Divoux, Agathe Robisson","doi":"10.1007/s00397-024-01465-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The dynamic yield stress associated with the flow cessation of cement pastes is measured using a rheometer equipped with various shear geometries such as vane, helical, sandblasted co-axial cylinders, and serrated parallel plates, as well as with the mini-cone spread test. Discrepancies in yield stress values are observed for cement pastes at various volume fractions, with one to two orders of magnitude difference between vane, helical and mini-cone spread measurements on the one hand, and co-axial cylinder and parallel plate measurements on the other hand. To understand this discrepancy, the flow profile of a cement paste in the parallel-plate geometry is investigated with a high-speed camera, revealing the rapid formation of an un-sheared band near the static bottom plate. The width of this band depends upon the rotational velocity of the top plate, and upon the shear time. Recalculation of shear stress shows that the reduced sheared gap alone cannot explain the low measured yield stress. Further exploration suggests the formation of zones with lower particle content, possibly linked to cement particle sedimentation. Here, we argue that the complex nature of cement pastes, composed of negatively buoyant non-Brownian particles with attractive interactions due to highly charged nano-size hydration products, accounts for their complex rheological behavior.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00397-024-01465-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic yield stress associated with the flow cessation of cement pastes is measured using a rheometer equipped with various shear geometries such as vane, helical, sandblasted co-axial cylinders, and serrated parallel plates, as well as with the mini-cone spread test. Discrepancies in yield stress values are observed for cement pastes at various volume fractions, with one to two orders of magnitude difference between vane, helical and mini-cone spread measurements on the one hand, and co-axial cylinder and parallel plate measurements on the other hand. To understand this discrepancy, the flow profile of a cement paste in the parallel-plate geometry is investigated with a high-speed camera, revealing the rapid formation of an un-sheared band near the static bottom plate. The width of this band depends upon the rotational velocity of the top plate, and upon the shear time. Recalculation of shear stress shows that the reduced sheared gap alone cannot explain the low measured yield stress. Further exploration suggests the formation of zones with lower particle content, possibly linked to cement particle sedimentation. Here, we argue that the complex nature of cement pastes, composed of negatively buoyant non-Brownian particles with attractive interactions due to highly charged nano-size hydration products, accounts for their complex rheological behavior.

Graphical abstract

Abstract Image

水泥浆动态屈服应力测量中的差异
摘要 使用配备有各种剪切几何结构(如叶片、螺旋、喷砂同轴圆柱和锯齿平行板)的流变仪以及微型锥形扩散试验,测量了与水泥浆停止流动相关的动态屈服应力。在不同体积分数的水泥浆中观察到屈服应力值的差异,叶片、螺旋和微型锥形展宽测量值与同轴圆柱体和平行板测量值之间相差一到两个数量级。为了理解这种差异,我们使用高速相机对平行板几何形状中水泥浆的流动剖面进行了研究,发现在静态底板附近迅速形成了一个未剪切带。该带的宽度取决于顶板的旋转速度和剪切时间。对剪切应力的重新计算表明,仅凭剪切间隙的减小无法解释测量到的低屈服应力。进一步的研究表明,颗粒含量较低的区域的形成可能与水泥颗粒沉积有关。在此,我们认为,水泥浆的性质复杂,由带负浮力的非布朗颗粒组成,并与高电荷的纳米级水化产物产生吸引力相互作用,这就是水泥浆流变行为复杂的原因所在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信