Sustainable machining of AISI4140 steel: a Taguchi-ANN perspective on eco-friendly metal cutting parameters

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pankaj Krishnath Jadhav, R. S. N. Sahai
{"title":"Sustainable machining of AISI4140 steel: a Taguchi-ANN perspective on eco-friendly metal cutting parameters","authors":"Pankaj Krishnath Jadhav,&nbsp;R. S. N. Sahai","doi":"10.1186/s40712-024-00154-y","DOIUrl":null,"url":null,"abstract":"<div><p>This work explores environmentally conscious machining practices for AISI4140 steel through Taguchi analysis. The study employs a design of experiments (DOE) approach, focusing on cutting speed, depth of cut, and coolant type as parameters. Taguchi’s L9 orthogonal array facilitates systematic experimentation, and the results are analyzed using MINITAB 17 software. Signal-to-noise ratios (SNR) are utilized to establish optimum operating conditions, evaluate individual parameter influences, and create linear regression models. The experiments reveal neem oil with graphene coolant as an eco-friendly solution, addressing health and environmental concerns. Main effects plots visually represent the impact of parameters on machining quality. Additionally, regression and artificial neural network (ANN) models are compared for surface roughness prediction, with ANN showing superior performance. The findings advocate for optimized cutting conditions, emphasizing material conservation, enhanced productivity, and eco-friendly practices in AISI4140 steel machining. This research contributes valuable insights for industries seeking sustainable machining solutions.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00154-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00154-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores environmentally conscious machining practices for AISI4140 steel through Taguchi analysis. The study employs a design of experiments (DOE) approach, focusing on cutting speed, depth of cut, and coolant type as parameters. Taguchi’s L9 orthogonal array facilitates systematic experimentation, and the results are analyzed using MINITAB 17 software. Signal-to-noise ratios (SNR) are utilized to establish optimum operating conditions, evaluate individual parameter influences, and create linear regression models. The experiments reveal neem oil with graphene coolant as an eco-friendly solution, addressing health and environmental concerns. Main effects plots visually represent the impact of parameters on machining quality. Additionally, regression and artificial neural network (ANN) models are compared for surface roughness prediction, with ANN showing superior performance. The findings advocate for optimized cutting conditions, emphasizing material conservation, enhanced productivity, and eco-friendly practices in AISI4140 steel machining. This research contributes valuable insights for industries seeking sustainable machining solutions.

AISI4140 钢的可持续加工:从 Taguchi-ANN 角度看生态友好型金属切削参数
本研究通过田口分析法探讨了 AISI4140 钢的环保型加工方法。研究采用了实验设计(DOE)方法,重点关注切削速度、切削深度和冷却液类型等参数。田口 L9 正交阵列有助于进行系统实验,实验结果使用 MINITAB 17 软件进行分析。利用信噪比(SNR)确定最佳操作条件,评估各个参数的影响,并建立线性回归模型。实验表明,楝树油与石墨烯冷却剂是一种生态友好型解决方案,可解决健康和环境问题。主效应图直观地显示了参数对加工质量的影响。此外,还比较了回归模型和人工神经网络(ANN)模型对表面粗糙度的预测,其中人工神经网络显示出更优越的性能。研究结果提倡在 AISI4140 钢加工中优化切削条件,强调节约材料、提高生产率和环保实践。这项研究为寻求可持续加工解决方案的行业提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信