{"title":"On Homogeneous Projectively Flat Finsler Metrics","authors":"A. Tayebi, B. Najafi","doi":"10.1007/s12220-024-01752-0","DOIUrl":null,"url":null,"abstract":"<p>Recently, Liu-Deng studied projectively flat homogeneous <span>\\((\\alpha , \\beta )\\)</span>-metrics and showed that if these metrics are not Riemannian nor locally Minkowskian, then the Finsler metrics are left invariant Randers metrics on the hyperbolic space <span>\\(\\textbf{H}^n\\)</span> as a solvable Lie group (Liu and Deng in Forum Math 27:3149–3165, 2015). In this paper, we study homogeneous projectively flat (or projective) general Finsler metrics. First, we prove that homogeneous projectively flat Finsler metrics have vanishing <span>\\({{\\bar{\\textbf{E}}}}\\)</span>-curvature if and only if they have almost isotropic S-curvature if and only if they have relatively isotropic L-curvature. In any cases, the Finsler metric reduces to a locally Minkowskian metric or a Riemannian metric of constant sectional curvature. This yields a classification of homogeneous projective Finsler metrics with the above mentioned non-Riemannian curvatures properties. Finally, we show that Liu-Deng’s Randers metrics are Douglas metrics which have not isotropic S-curvature nor relatively isotropic L-curvature.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01752-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Liu-Deng studied projectively flat homogeneous \((\alpha , \beta )\)-metrics and showed that if these metrics are not Riemannian nor locally Minkowskian, then the Finsler metrics are left invariant Randers metrics on the hyperbolic space \(\textbf{H}^n\) as a solvable Lie group (Liu and Deng in Forum Math 27:3149–3165, 2015). In this paper, we study homogeneous projectively flat (or projective) general Finsler metrics. First, we prove that homogeneous projectively flat Finsler metrics have vanishing \({{\bar{\textbf{E}}}}\)-curvature if and only if they have almost isotropic S-curvature if and only if they have relatively isotropic L-curvature. In any cases, the Finsler metric reduces to a locally Minkowskian metric or a Riemannian metric of constant sectional curvature. This yields a classification of homogeneous projective Finsler metrics with the above mentioned non-Riemannian curvatures properties. Finally, we show that Liu-Deng’s Randers metrics are Douglas metrics which have not isotropic S-curvature nor relatively isotropic L-curvature.