Fractional maximal operators on weighted variable Lebesgue spaces over the spaces of homogeneous type

IF 1.4 3区 数学 Q1 MATHEMATICS
Xi Cen
{"title":"Fractional maximal operators on weighted variable Lebesgue spaces over the spaces of homogeneous type","authors":"Xi Cen","doi":"10.1007/s13324-024-00955-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((X,d,\\mu )\\)</span> is a space of homogeneous type, we establish a new class of fractional-type variable weights <span>\\(A_{p(\\cdot ), q(\\cdot )}(X)\\)</span>. Then, we get the new weighted strong-type and weak-type characterizations for fractional maximal operators <span>\\(M_\\eta \\)</span> on weighted variable Lebesgue spaces over <span>\\((X,d,\\mu )\\)</span>. This study generalizes the results by Cruz-Uribe–Fiorenza–Neugebauer (J Math Anal Appl 64(394):744–760, 2012), Bernardis–Dalmasso–Pradolini (Ann Acad Sci Fenn-M 39:23-50, 2014), Cruz-Uribe–Shukla (Stud Math 242(2):109–139, 2018), and Cruz-Uribe–Cummings (Ann Fenn Math 47(1):457–488, 2022).</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00955-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \((X,d,\mu )\) is a space of homogeneous type, we establish a new class of fractional-type variable weights \(A_{p(\cdot ), q(\cdot )}(X)\). Then, we get the new weighted strong-type and weak-type characterizations for fractional maximal operators \(M_\eta \) on weighted variable Lebesgue spaces over \((X,d,\mu )\). This study generalizes the results by Cruz-Uribe–Fiorenza–Neugebauer (J Math Anal Appl 64(394):744–760, 2012), Bernardis–Dalmasso–Pradolini (Ann Acad Sci Fenn-M 39:23-50, 2014), Cruz-Uribe–Shukla (Stud Math 242(2):109–139, 2018), and Cruz-Uribe–Cummings (Ann Fenn Math 47(1):457–488, 2022).

Abstract Image

Abstract Image

同质类型空间上加权可变勒贝格空间的分数最大算子
假设 \((X,d,\mu )\) 是一个同质型空间,我们建立了一类新的分数型变量权重 \(A_{p(\cdot ), q(\cdot )}(X)\).然后,我们得到了在\((X,d,\mu )\)上的加权可变 Lebesgue 空间上的分数最大算子 \(M_\eta \)的新的加权强型和弱型特征。本研究概括了 Cruz-Uribe-Fiorenza-Neugebauer (J Math Anal Appl 64(394):744-760, 2012), Bernardis-Dalmasso-Pradolini (Ann Acad Sci Fenn-M 39:23-50, 2014), Cruz-Uribe-Shukla (Stud Math 242(2):109-139, 2018) 和 Cruz-Uribe-Cummings (Ann Fenn Math 47(1):457-488, 2022) 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信