{"title":"Dynamic weighting label assignment for oriented object detection","authors":"Yunhui Zhu, Buliao Huang","doi":"10.1007/s12293-024-00427-1","DOIUrl":null,"url":null,"abstract":"<p>Oriented object detection has garnered significant attention for its broad applications in remote sensing image processing. Most oriented detectors perform dense predictions on a set of predefined anchors to generate oriented bounding boxes, where these anchors require classification (cls) and localization (loc) labels for detector training. Recent advancements in label assignment utilize the overall quality score of cls and loc predictions to determine positive and negative samples for each oriented object. However, these methods typically establish the overall quality score by assigning fixed weights to cls and loc quality scores. This approach may not be optimal, as fixed weights fail to dynamically balance cls and loc performance during model optimization, thereby constraining detection efficacy. Motivated by this observation, this paper proposes a Dynamic Weighting Label Assignment (DWLA) algorithm. DWLA dynamically adjusts the weights of individual quality scores based on the current model state to continuously balance cls and loc performance. Additionally, to mitigate the impact of unreliable predictions and achieve more stable training, this paper proposes a level-wise positive sample selection scheme and an object-adaptive scheme for constructing initial candidates of positive samples, respectively. Comprehensive experiments on the DOTA and UCAS-AOD datasets have validated the effectiveness of the proposed DWLA.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"36 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00427-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Oriented object detection has garnered significant attention for its broad applications in remote sensing image processing. Most oriented detectors perform dense predictions on a set of predefined anchors to generate oriented bounding boxes, where these anchors require classification (cls) and localization (loc) labels for detector training. Recent advancements in label assignment utilize the overall quality score of cls and loc predictions to determine positive and negative samples for each oriented object. However, these methods typically establish the overall quality score by assigning fixed weights to cls and loc quality scores. This approach may not be optimal, as fixed weights fail to dynamically balance cls and loc performance during model optimization, thereby constraining detection efficacy. Motivated by this observation, this paper proposes a Dynamic Weighting Label Assignment (DWLA) algorithm. DWLA dynamically adjusts the weights of individual quality scores based on the current model state to continuously balance cls and loc performance. Additionally, to mitigate the impact of unreliable predictions and achieve more stable training, this paper proposes a level-wise positive sample selection scheme and an object-adaptive scheme for constructing initial candidates of positive samples, respectively. Comprehensive experiments on the DOTA and UCAS-AOD datasets have validated the effectiveness of the proposed DWLA.
Memetic ComputingCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍:
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.
The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:
Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.