Lower bound for the Sombor index of trees with a given total domination number

IF 2.6 3区 数学
Xiaoling Sun, Jianwei Du, Yinzhen Mei
{"title":"Lower bound for the Sombor index of trees with a given total domination number","authors":"Xiaoling Sun, Jianwei Du, Yinzhen Mei","doi":"10.1007/s40314-024-02871-8","DOIUrl":null,"url":null,"abstract":"<p>Recently, finding extremal structures of graphs on Sombor index has received a lot of attention. The Sombor (<i>SO</i>) index of a graph <i>G</i> is defined by the sum of weights <span>\\(\\sqrt{deg_{G}(u)^{2}+deg_{G}(v)^{2}}\\)</span> over all edges <i>uv</i> of <i>G</i>, where <span>\\(deg_{G}(u)\\)</span> stands for the degree of vertex <i>u</i> in <i>G</i>. In this article, we obtain a lower bound on Sombor index of trees with a given order and total domination number, and characterize the trees achieving the bound.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"81 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02871-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, finding extremal structures of graphs on Sombor index has received a lot of attention. The Sombor (SO) index of a graph G is defined by the sum of weights \(\sqrt{deg_{G}(u)^{2}+deg_{G}(v)^{2}}\) over all edges uv of G, where \(deg_{G}(u)\) stands for the degree of vertex u in G. In this article, we obtain a lower bound on Sombor index of trees with a given order and total domination number, and characterize the trees achieving the bound.

Abstract Image

具有给定总支配数的树木的松博指数下限
最近,寻找图的极值结构(Sombor index)受到了广泛关注。图 G 的 Sombor(SO)指数定义为 G 中所有边 uv 的权重总和(\sqrt{deg_{G}(u)^{2}+deg_{G}(v)^{2}}/),其中 \(deg_{G}(u)\)表示顶点 u 在 G 中的度数。在本文中,我们得到了具有给定阶数和总支配数的树的松博指数下限,并描述了达到下限的树的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信