{"title":"Incremental quaternion singular value decomposition and its application for low rank quaternion matrix completion","authors":"Yang Xu, Kaixin Gao","doi":"10.1007/s40314-024-02874-5","DOIUrl":null,"url":null,"abstract":"<p>Computing the optimal low rank approximations of quaternion matrices is the key target in many quaternion matrix related problems including color images inpainting and recognition, which can be reconstructed by some dominant singular values of quaternion matrices. However, the singular value decomposition of large-scale quaternion matrices requires expensive storage and computational costs. In this paper, we propose an incremental quaternion singular value decomposition (IQSVD) method for a class of quaternion matrices, where the number of columns far exceeds the number of rows, to improve computing efficiency. What’s more, based on IQSVD, we consider the low rank quaternion matrix completion problem and design a proximal linearized minimization algorithm with convergence guarantee to solve it. Numerical experiments on synthetic data and real-world videos illustrate the efficiency of IQSVD and the proposed proximal linearized minimization algorithm involved IQSVD.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"21 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02874-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computing the optimal low rank approximations of quaternion matrices is the key target in many quaternion matrix related problems including color images inpainting and recognition, which can be reconstructed by some dominant singular values of quaternion matrices. However, the singular value decomposition of large-scale quaternion matrices requires expensive storage and computational costs. In this paper, we propose an incremental quaternion singular value decomposition (IQSVD) method for a class of quaternion matrices, where the number of columns far exceeds the number of rows, to improve computing efficiency. What’s more, based on IQSVD, we consider the low rank quaternion matrix completion problem and design a proximal linearized minimization algorithm with convergence guarantee to solve it. Numerical experiments on synthetic data and real-world videos illustrate the efficiency of IQSVD and the proposed proximal linearized minimization algorithm involved IQSVD.
期刊介绍:
Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics).
The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.