In this note, we prove that the toroidal pseudo-differential operator is bounded from L∞(Tn){L}^{\infty }\left({{\mathbb{T}}}^{n}) to BMO(Tn){\rm{BMO}}\left({{\mathbb{T}}}^{n}) if the symbol belongs to the toroidal Hörmander class Sρ,δn(ρ−1)∕2(Tn×Zn){S}_{\rho ,\delta }^{n\left(\rho -1)/2}\left({{\mathbb{T}}}^{n}\times {{\mathbb{Z}}}^{n}) with 0<ρ≤10\lt \rho \le 1 and 0≤δ<10\le \delta \lt 1. As a corollary, we obtain a result of toroidal pseudo-differential operators on Lp{L}^{p} when 2<p<∞2\lt p\lt \infty for symbols in the class Sρ,δm(Tn×Zn){S}_{\rho ,\delta }^{m}\left({{\mathbb{T}}}^{n}\times {{\mathbb{Z}}}^{n}) with m≤n(ρ−1)12−1p+npmin{0,ρ−δ}m\le n\left(\rho -1)\left(\phantom{\rule[-0.75em]{}{0ex}},\frac{1}{2}-\frac{1}{p}\right)+\frac{n}{p}\min \left\{0,\rho -\delta \right\}.
在本说明中,我们证明,如果符号属于环形霍曼德类 S ρ,则环形伪微分算子从 L ∞ ( T n ) {L}^{\infty }\left({{mathbb{T}}}^{n}) 到 BMO ( T n ) {\rm{BMO}}\left({{mathbb{T}}}^{n}) 是有界的、δ n ( ρ - 1 ) ∕ 2 ( T n × Z n ) {S}_{rho ,\delta }^{n\left(\rho -1)/2}\left({{\mathbb{T}}}^{n}\times {{\mathbb{Z}}}^{n}) with 0 <;ρ ≤ 1 0\lt \rho \le 1 和 0 ≤ δ < 1 0\le \delta \lt 1 。作为推论,我们得到了当 2 < p < 时 L p {L}^{p} 上环形伪微分算子的结果;∞ 2\lt p\lt \infty for symbols in the class S ρ , δ m ( T n × Z n ) {S}_\{rho 、\m≤ n ( ρ - 1 ) 1 2 - 1 p + n p min { 0 , ρ - δ } m\le n\left(\rho -1)\left(\phantom{\rule[-0.75em]{}{0ex}},(frac{1}{2}-\frac{1}{p}\right)+\frac{n}{p}min (left{0,\rho -\delta \right}) .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.