{"title":"3D‐DIC for mechanical characterization of composite solid propellant under uniaxial compression","authors":"Rajeev Ranjan, H. Murthy","doi":"10.1002/prep.202400084","DOIUrl":null,"url":null,"abstract":"A novel experimental setup, utilizing 3D Digital Image Correlation (3D‐DIC), is employed to characterize the mechanical behaviour of composite solid propellant (CSP) under uniaxial compression at three displacement rates (1, 7, and 50 mm/min). At larger deformation, 3D‐DIC consistently shows smaller strains than nominal strain values, and this difference increases with deformation across all the displacement rates. Displacement rates significantly affect the non‐linear stress‐strain response of the CSPs. After the completion of the compression test, the specimen is unloaded, and the lengths of the unloaded specimens measured after 24 hour indicate a recovery of 90–94 % of the original length of the specimens. The recovered length increases with an increase in the displacement rate. Initially, Poisson's ratio is close to 0.5, and dilatation is zero, indicating an incompressible behaviour. However, both Poisson's ratio and dilatation increase with an increase in longitudinal strain, indicating a transition to compressible behaviour. Comparing the scanning electron microscope (SEM) micrographs of the virgin and compressive‐loaded samples, noticeable debonding is observed at the matrix‐particle interfaces.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202400084","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A novel experimental setup, utilizing 3D Digital Image Correlation (3D‐DIC), is employed to characterize the mechanical behaviour of composite solid propellant (CSP) under uniaxial compression at three displacement rates (1, 7, and 50 mm/min). At larger deformation, 3D‐DIC consistently shows smaller strains than nominal strain values, and this difference increases with deformation across all the displacement rates. Displacement rates significantly affect the non‐linear stress‐strain response of the CSPs. After the completion of the compression test, the specimen is unloaded, and the lengths of the unloaded specimens measured after 24 hour indicate a recovery of 90–94 % of the original length of the specimens. The recovered length increases with an increase in the displacement rate. Initially, Poisson's ratio is close to 0.5, and dilatation is zero, indicating an incompressible behaviour. However, both Poisson's ratio and dilatation increase with an increase in longitudinal strain, indicating a transition to compressible behaviour. Comparing the scanning electron microscope (SEM) micrographs of the virgin and compressive‐loaded samples, noticeable debonding is observed at the matrix‐particle interfaces.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.