{"title":"Empowering Antimicrobial Peptides: Harnessing Nanotechnology and Engineering Strategies to Combat Microbial Resistance","authors":"Dubey Avinash, Anjali Bisht, Manish Kumar, Shubham Thakur, Preeti Patel, Balak Das Kurmi","doi":"10.1002/pep2.24376","DOIUrl":null,"url":null,"abstract":"Antimicrobial peptides (AMPs) are being studied for their potential in addressing microbial resistance, a significant issue in treating infections. More than 22,500 AMPs are listed in the database, but their clinical use faces challenges like instability and selectivity. Nanodrug delivery systems are now seen as a beneficial method to improve the effectiveness of AMPs. These systems can shield AMPs from degradation, enhance their availability, and deliver them to specific infection sites, enhancing their ability to combat resistance. One example is liposomal nanoparticles loaded with a mix of AMPs, targeting drug‐resistant bacteria directly. Strategies to develop novel AMPs through engineering methods, including design approaches, computational techniques, and modifications for stability, are discussed in this review. Combinatorial approaches with antibiotics, patents, and clinical trials involving AMPs against infections are also considered, highlighting the potential of AMPs in battling microbial resistance.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptide Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pep2.24376","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial peptides (AMPs) are being studied for their potential in addressing microbial resistance, a significant issue in treating infections. More than 22,500 AMPs are listed in the database, but their clinical use faces challenges like instability and selectivity. Nanodrug delivery systems are now seen as a beneficial method to improve the effectiveness of AMPs. These systems can shield AMPs from degradation, enhance their availability, and deliver them to specific infection sites, enhancing their ability to combat resistance. One example is liposomal nanoparticles loaded with a mix of AMPs, targeting drug‐resistant bacteria directly. Strategies to develop novel AMPs through engineering methods, including design approaches, computational techniques, and modifications for stability, are discussed in this review. Combinatorial approaches with antibiotics, patents, and clinical trials involving AMPs against infections are also considered, highlighting the potential of AMPs in battling microbial resistance.
Peptide ScienceBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
5.20
自引率
4.20%
发文量
36
期刊介绍:
The aim of Peptide Science is to publish significant original research papers and up-to-date reviews covering the entire field of peptide research. Peptide Science provides a forum for papers exploring all aspects of peptide synthesis, materials, structure and bioactivity, including the use of peptides in exploring protein functions and protein-protein interactions. By incorporating both experimental and theoretical studies across the whole spectrum of peptide science, the journal serves the interdisciplinary biochemical, biomaterials, biophysical and biomedical research communities.
Peptide Science is the official journal of the American Peptide Society.