Empowering Antimicrobial Peptides: Harnessing Nanotechnology and Engineering Strategies to Combat Microbial Resistance

IF 1.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peptide Science Pub Date : 2024-08-02 DOI:10.1002/pep2.24376
Dubey Avinash, Anjali Bisht, Manish Kumar, Shubham Thakur, Preeti Patel, Balak Das Kurmi
{"title":"Empowering Antimicrobial Peptides: Harnessing Nanotechnology and Engineering Strategies to Combat Microbial Resistance","authors":"Dubey Avinash, Anjali Bisht, Manish Kumar, Shubham Thakur, Preeti Patel, Balak Das Kurmi","doi":"10.1002/pep2.24376","DOIUrl":null,"url":null,"abstract":"Antimicrobial peptides (AMPs) are being studied for their potential in addressing microbial resistance, a significant issue in treating infections. More than 22,500 AMPs are listed in the database, but their clinical use faces challenges like instability and selectivity. Nanodrug delivery systems are now seen as a beneficial method to improve the effectiveness of AMPs. These systems can shield AMPs from degradation, enhance their availability, and deliver them to specific infection sites, enhancing their ability to combat resistance. One example is liposomal nanoparticles loaded with a mix of AMPs, targeting drug‐resistant bacteria directly. Strategies to develop novel AMPs through engineering methods, including design approaches, computational techniques, and modifications for stability, are discussed in this review. Combinatorial approaches with antibiotics, patents, and clinical trials involving AMPs against infections are also considered, highlighting the potential of AMPs in battling microbial resistance.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptide Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pep2.24376","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are being studied for their potential in addressing microbial resistance, a significant issue in treating infections. More than 22,500 AMPs are listed in the database, but their clinical use faces challenges like instability and selectivity. Nanodrug delivery systems are now seen as a beneficial method to improve the effectiveness of AMPs. These systems can shield AMPs from degradation, enhance their availability, and deliver them to specific infection sites, enhancing their ability to combat resistance. One example is liposomal nanoparticles loaded with a mix of AMPs, targeting drug‐resistant bacteria directly. Strategies to develop novel AMPs through engineering methods, including design approaches, computational techniques, and modifications for stability, are discussed in this review. Combinatorial approaches with antibiotics, patents, and clinical trials involving AMPs against infections are also considered, highlighting the potential of AMPs in battling microbial resistance.
增强抗菌肽的能力:利用纳米技术和工程策略对抗微生物抗药性
抗菌肽(AMPs)是治疗感染的一个重要问题,人们正在研究它们在解决微生物耐药性方面的潜力。数据库中列出了 22,500 多种 AMPs,但它们的临床应用面临着不稳定性和选择性等挑战。纳米给药系统目前被视为提高 AMPs 效力的一种有效方法。这些系统可以保护 AMPs 免受降解,提高其可用性,并将其输送到特定的感染部位,从而增强其对抗抗药性的能力。其中一个例子是纳米脂质体颗粒,其中装载了混合的 AMPs,可直接针对耐药细菌。本综述讨论了通过工程学方法开发新型 AMPs 的策略,包括设计方法、计算技术和稳定性改造。本综述还考虑了与抗生素的组合方法、专利以及涉及 AMPs 抗感染的临床试验,强调了 AMPs 在抗击微生物耐药性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Peptide Science
Peptide Science Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
5.20
自引率
4.20%
发文量
36
期刊介绍: The aim of Peptide Science is to publish significant original research papers and up-to-date reviews covering the entire field of peptide research. Peptide Science provides a forum for papers exploring all aspects of peptide synthesis, materials, structure and bioactivity, including the use of peptides in exploring protein functions and protein-protein interactions. By incorporating both experimental and theoretical studies across the whole spectrum of peptide science, the journal serves the interdisciplinary biochemical, biomaterials, biophysical and biomedical research communities. Peptide Science is the official journal of the American Peptide Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信