{"title":"Characterized Subgroups Related to some Non-arithmetic Sequence of Integers","authors":"Pratulananda Das, Ayan Ghosh","doi":"10.1007/s00009-024-02708-y","DOIUrl":null,"url":null,"abstract":"<p>A subgroup <i>H</i> of the circle group <span>\\({\\mathbb {T}}\\)</span> is called characterized by a sequence of integers <span>\\((u_n)\\)</span> if <span>\\(H=\\{x\\in {\\mathbb {T}}: \\lim _{n\\rightarrow \\infty } u_nx=0\\}\\)</span>. In this note, we primarily consider a non-arithmetic sequence arising out of an arithmetic sequence in line of Bíró et al. (Stud Sci Math Hung 38: 97–113, 2001) and investigate the corresponding characterized subgroup thoroughly which includes its cardinality aspects. The whole investigation reiterates that these characterized subgroups are infinitely generated unbounded torsion countable subgroups of the circle group <span>\\({\\mathbb {T}}\\)</span>. Finally, we delve into certain structure theoretic observations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02708-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A subgroup H of the circle group \({\mathbb {T}}\) is called characterized by a sequence of integers \((u_n)\) if \(H=\{x\in {\mathbb {T}}: \lim _{n\rightarrow \infty } u_nx=0\}\). In this note, we primarily consider a non-arithmetic sequence arising out of an arithmetic sequence in line of Bíró et al. (Stud Sci Math Hung 38: 97–113, 2001) and investigate the corresponding characterized subgroup thoroughly which includes its cardinality aspects. The whole investigation reiterates that these characterized subgroups are infinitely generated unbounded torsion countable subgroups of the circle group \({\mathbb {T}}\). Finally, we delve into certain structure theoretic observations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.