{"title":"Enhanced Analysis of Ice Accretion on Rotating Blades of Horizontal-Axis Wind Turbines Using Advanced 3D Scanning Technology","authors":"Zhen Lei, Yuxiao Dong, Qinghui Wang, Hailin Li, Yexue Han, Fang Feng","doi":"10.3390/coatings14080970","DOIUrl":null,"url":null,"abstract":"This study investigated the meteorological conditions leading to ice formation on wind turbines in a coastal mountainous area. An enhanced ice formation similarity criterion was developed for the experimental design, utilizing a scaled-down model of a 1.5 MW horizontal-axis wind turbine in icing wind tunnel tests. Three-dimensional ice shapes on the rotating blades were obtained and scanned using advanced 3D laser measurement technology. Post-processing of the scanned data facilitated the construction of solid models of the ice-covered blades. This study analyzed the maximum ice thickness, ice-covered area, and dimensionless parameters such as the maximum dimensionless ice thickness and dimensionless ice-covered area along the blade. Under the experimental conditions, the maximum ice thickness reached 0.5102 m, and the ice-covered area extended up to 0.5549 m2. The dimensionless maximum ice thickness and dimensionless ice-covered area consistently increased along the blade direction. Our analysis of 3D ice shape characteristics and the ice volume under different test conditions demonstrated that wind speed and the liquid water content (LWC) are critical factors affecting ice formation on blade surfaces. For a constant tip speed ratio, higher wind speeds and a greater LWC resulted in increased ice volumes on the blade surfaces. Specifically, increasing the wind speed can augment the ice volume by up to 57.2%, while increasing the LWC can enhance the ice volume by up to 149.2% under the experimental conditions selected in this study.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14080970","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the meteorological conditions leading to ice formation on wind turbines in a coastal mountainous area. An enhanced ice formation similarity criterion was developed for the experimental design, utilizing a scaled-down model of a 1.5 MW horizontal-axis wind turbine in icing wind tunnel tests. Three-dimensional ice shapes on the rotating blades were obtained and scanned using advanced 3D laser measurement technology. Post-processing of the scanned data facilitated the construction of solid models of the ice-covered blades. This study analyzed the maximum ice thickness, ice-covered area, and dimensionless parameters such as the maximum dimensionless ice thickness and dimensionless ice-covered area along the blade. Under the experimental conditions, the maximum ice thickness reached 0.5102 m, and the ice-covered area extended up to 0.5549 m2. The dimensionless maximum ice thickness and dimensionless ice-covered area consistently increased along the blade direction. Our analysis of 3D ice shape characteristics and the ice volume under different test conditions demonstrated that wind speed and the liquid water content (LWC) are critical factors affecting ice formation on blade surfaces. For a constant tip speed ratio, higher wind speeds and a greater LWC resulted in increased ice volumes on the blade surfaces. Specifically, increasing the wind speed can augment the ice volume by up to 57.2%, while increasing the LWC can enhance the ice volume by up to 149.2% under the experimental conditions selected in this study.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material