Sparkle: Deep Learning Driven Autotuning for Taming High-Dimensionality of Spark Deployments

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dimosthenis Masouros;George Retsinas;Sotirios Xydis;Dimitrios Soudris
{"title":"Sparkle: Deep Learning Driven Autotuning for Taming High-Dimensionality of Spark Deployments","authors":"Dimosthenis Masouros;George Retsinas;Sotirios Xydis;Dimitrios Soudris","doi":"10.1109/TCC.2024.3437484","DOIUrl":null,"url":null,"abstract":"The exponential growth of data in the Cloud has highlighted the need for more efficient data processing. In-Memory Computing frameworks (e.g., Spark) offer improved efficiency for large-scale data analytics, however, they also provide a plethora of configuration parameters that affect the resource consumption and performance of applications. Manually optimizing these parameters is a time-consuming process, due to \n<i>i)</i>\n the high-dimensional configuration space, \n<i>ii)</i>\n the complex inter-relationship between different parameters, \n<i>iii)</i>\n the diverse nature of workloads and \n<i>iv)</i>\n the inherent data heterogeneity. We introduce \n<i>Sparkle</i>\n, an end-to-end deep learning-based framework for automating the performance modeling and tuning of Spark applications. We introduce a modular DNN architecture that expands to the entire Spark parameter configuration space and provides a universal performance modeling approach, completely eliminating the need for human or statistical reasoning. By employing a genetic optimization process, \n<i>Sparkle</i>\n quickly traverses the design space and identifies highly optimized Spark configurations. Our experiments on the HiBench benchmark suite show that \n<i>Sparkle</i>\n delivers an average prediction accuracy of 93%, with high generalization capabilities, i.e., \n<inline-formula><tex-math>$\\approx 80\\%$</tex-math></inline-formula>\n accuracy for unseen workloads, dataset sizes and configurations, outperforming state-of-art. Regarding end-to-end optimization, \n<i>Sparkle</i>\n efficiently explores Spark's high-dimensional parameter space, delivering new dominant Spark configurations, which correspond to 65% Pareto coverage w.r.t its Spark native optimization counterpart.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1058-1073"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10621444/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth of data in the Cloud has highlighted the need for more efficient data processing. In-Memory Computing frameworks (e.g., Spark) offer improved efficiency for large-scale data analytics, however, they also provide a plethora of configuration parameters that affect the resource consumption and performance of applications. Manually optimizing these parameters is a time-consuming process, due to i) the high-dimensional configuration space, ii) the complex inter-relationship between different parameters, iii) the diverse nature of workloads and iv) the inherent data heterogeneity. We introduce Sparkle , an end-to-end deep learning-based framework for automating the performance modeling and tuning of Spark applications. We introduce a modular DNN architecture that expands to the entire Spark parameter configuration space and provides a universal performance modeling approach, completely eliminating the need for human or statistical reasoning. By employing a genetic optimization process, Sparkle quickly traverses the design space and identifies highly optimized Spark configurations. Our experiments on the HiBench benchmark suite show that Sparkle delivers an average prediction accuracy of 93%, with high generalization capabilities, i.e., $\approx 80\%$ accuracy for unseen workloads, dataset sizes and configurations, outperforming state-of-art. Regarding end-to-end optimization, Sparkle efficiently explores Spark's high-dimensional parameter space, delivering new dominant Spark configurations, which correspond to 65% Pareto coverage w.r.t its Spark native optimization counterpart.
Sparkle:深度学习驱动的自动调整,用于控制 Spark 部署的高维性
云中数据的指数级增长凸显了对更高效数据处理的需求。内存计算框架(例如,Spark)为大规模数据分析提供了更高的效率,然而,它们也提供了过多的配置参数,这些参数会影响应用程序的资源消耗和性能。手动优化这些参数是一个耗时的过程,因为i)高维配置空间,ii)不同参数之间的复杂相互关系,iii)工作负载的多样性以及iv)固有的数据异构性。我们介绍了Spark,一个端到端的深度学习框架,用于自动化Spark应用程序的性能建模和调优。我们引入了模块化DNN架构,扩展到整个Spark参数配置空间,并提供了通用的性能建模方法,完全消除了对人工或统计推理的需要。通过采用遗传优化过程,Sparkle快速遍历设计空间并识别高度优化的Spark配置。我们在HiBench基准测试套件上的实验表明,Sparkle的平均预测准确率为93%,具有很高的泛化能力,即对于未见过的工作负载、数据集大小和配置,其准确率约为80%,优于最先进的技术。在端到端优化方面,Sparkle有效地探索了Spark的高维参数空间,提供了新的主导Spark配置,相当于65%的Pareto覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信