K. Abhimanyu Kumar Patro, Pulkit Singh, Narendra Khatri, Bibhudendra Acharya
{"title":"Chaotic multiple-image encryption scheme: a simple and highly efficient solution for diverse applications","authors":"K. Abhimanyu Kumar Patro, Pulkit Singh, Narendra Khatri, Bibhudendra Acharya","doi":"10.1117/1.jei.33.4.043032","DOIUrl":null,"url":null,"abstract":"A multitude of confidential and personal digital images are commonly stored and transmitted by devices with limited resources. These devices necessitate the implementation of uncomplicated yet highly efficient encryption techniques to safeguard the images. The challenge of designing encryption algorithms for multiple digital images that are simple, secure, and highly efficient is significant. This challenge arises due to the large quantity of images involved and the considerable size and strong inter-pixel associations exhibited by these digital images. We propose a method for efficiently, simply, and securely encrypting multiple images simultaneously using chaotic one-dimensional (1D) maps. Initially, each grayscale image is consolidated into a single, substantial image. Through transpose columnar transposition and bit-XOR diffusion procedures, each block undergoes parallel permutation and diffusion. The incorporation of parallel permutation and diffusion functions accelerates and enhances the performance of the method. In contrast to existing multi-image encryption methods, the proposed approach consistently employs a single 1D chaotic map, rendering the algorithm both software and hardware efficient while maintaining simplicity. The encryption technique adheres to general requirements for simplicity and high efficiency. Security analysis and simulation results demonstrate that the proposed method is straightforward, highly efficient, and effectively enhances the security of cipher images.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"50 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A multitude of confidential and personal digital images are commonly stored and transmitted by devices with limited resources. These devices necessitate the implementation of uncomplicated yet highly efficient encryption techniques to safeguard the images. The challenge of designing encryption algorithms for multiple digital images that are simple, secure, and highly efficient is significant. This challenge arises due to the large quantity of images involved and the considerable size and strong inter-pixel associations exhibited by these digital images. We propose a method for efficiently, simply, and securely encrypting multiple images simultaneously using chaotic one-dimensional (1D) maps. Initially, each grayscale image is consolidated into a single, substantial image. Through transpose columnar transposition and bit-XOR diffusion procedures, each block undergoes parallel permutation and diffusion. The incorporation of parallel permutation and diffusion functions accelerates and enhances the performance of the method. In contrast to existing multi-image encryption methods, the proposed approach consistently employs a single 1D chaotic map, rendering the algorithm both software and hardware efficient while maintaining simplicity. The encryption technique adheres to general requirements for simplicity and high efficiency. Security analysis and simulation results demonstrate that the proposed method is straightforward, highly efficient, and effectively enhances the security of cipher images.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.