Jacobian Schemes Arising From Hypersurface Arrangements in ℙn

Pub Date : 2024-08-01 DOI:10.1093/imrn/rnae164
Juan Migliore, Uwe Nagel
{"title":"Jacobian Schemes Arising From Hypersurface Arrangements in ℙn","authors":"Juan Migliore, Uwe Nagel","doi":"10.1093/imrn/rnae164","DOIUrl":null,"url":null,"abstract":"Freeness is an important property of a hypersurface arrangement, although its presence is not well understood. A hypersurface arrangement in ${\\mathbb{P}}^{n}$ is free if $S/J$ is Cohen–Macaulay (CM), where $S = K[x_{0},\\ldots ,x_{n}]$ and $J$ is the Jacobian ideal. We study three related unmixed ideals: $J^{top}$, the intersection of height two primary components, $\\sqrt{J^{top}}$, the radical of $J^{top}$, and when the $f_{i}$ are smooth we also study $\\sqrt{J}$. Under mild hypotheses, we show that these ideals are CM. This establishes a full generalization of an earlier result with Schenck from hyperplane arrangements to hypersurface arrangements. If the hypotheses fail for an arrangement in projective $3$-space, the Hartshorne–Rao module measures the failure of CMness. We establish consequences for the even liaison classes of $J^{top}$ and $\\sqrt{J}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Freeness is an important property of a hypersurface arrangement, although its presence is not well understood. A hypersurface arrangement in ${\mathbb{P}}^{n}$ is free if $S/J$ is Cohen–Macaulay (CM), where $S = K[x_{0},\ldots ,x_{n}]$ and $J$ is the Jacobian ideal. We study three related unmixed ideals: $J^{top}$, the intersection of height two primary components, $\sqrt{J^{top}}$, the radical of $J^{top}$, and when the $f_{i}$ are smooth we also study $\sqrt{J}$. Under mild hypotheses, we show that these ideals are CM. This establishes a full generalization of an earlier result with Schenck from hyperplane arrangements to hypersurface arrangements. If the hypotheses fail for an arrangement in projective $3$-space, the Hartshorne–Rao module measures the failure of CMness. We establish consequences for the even liaison classes of $J^{top}$ and $\sqrt{J}$.
分享
查看原文
由ℙn 中超曲面排列产生的雅各布方案
无自由度是超曲面排列的一个重要属性,尽管人们对它的存在还不甚了解。如果 $S/J$ 是 Cohen-Macaulay (CM),其中 $S = K[x_{0},\ldots ,x_{n}]$ 和 $J$ 是 Jacobian 理想,那么 ${mathbb{P}}^{n}$ 中的超曲面排列就是自由的。我们研究了三个相关的非混合理想:$J^{top}$,高度两个主成分的交集;$J^{top}$ 的根;当 $f_{i}$ 平滑时,我们还研究了 $\sqrt{J}$。在温和的假设条件下,我们证明了这些理想是 CM。这建立了申克早先从超平面排列到超曲面排列结果的全面推广。如果在投影 3 美元空间中的排列假设失败,哈特肖恩-拉奥模块就会衡量 CMness 的失败。我们建立了 $J^{top}$ 和 $\sqrt{J}$ 的偶数联络类的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信