{"title":"Retrofitting of heat-damaged fiber-reinforced concrete cylinders using welded wire mesh configurations","authors":"Aref A. Abadel","doi":"10.2478/msp-2024-0021","DOIUrl":null,"url":null,"abstract":"Fire damage poses a significant risk to reinforced concrete structures throughout their lifespan. Fire exposure influences the stress-strain properties and durability of concrete, despite its non-flammability. Therefore, the strengthening approach is an economic option for lengthening their lifespan. This paper aims to conduct an experimental investigation into retrofitting heat-damaged fiber-reinforced concrete cylinders using welded wire mesh (WWM) configurations. Four concrete mixes were investigated. In total, 48 concrete cylinders were tested under axial compression until failure. The primary variables considered in the testing program consisted of (i) the influence of various fiber types (steel fiber (SF), polypropylene (PP), and hybrid fibers (SF+PP)); (ii) exposure temperature (26°C and 600°C); and (iii) WWM strengthening. Exposure to a temperature of 600°C led to a significant reduction in the compressive strength, ranging from 23.7% to 53.3%, while the inclusion of fibers has a substantial effect on the compressive strength of concrete, regardless of fiber type, with an increased ratio reaching up to 34.7%. The finding also clearly shows that the strengthening of heat-damaged specimens with WWM jacketing resulted in a 38.8%, 4.9%, and 9.4% increase in compressive strength for SF, PP, and SF+PPF specimens, respectively, compared to unheated control specimens. The suggested approaches to strengthening, which involve the use of WWM jacketing with two layers, successfully restored and surpassed the initial concrete compressive strength of the specimens that were damaged due to exposure to high temperatures.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"49 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/msp-2024-0021","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fire damage poses a significant risk to reinforced concrete structures throughout their lifespan. Fire exposure influences the stress-strain properties and durability of concrete, despite its non-flammability. Therefore, the strengthening approach is an economic option for lengthening their lifespan. This paper aims to conduct an experimental investigation into retrofitting heat-damaged fiber-reinforced concrete cylinders using welded wire mesh (WWM) configurations. Four concrete mixes were investigated. In total, 48 concrete cylinders were tested under axial compression until failure. The primary variables considered in the testing program consisted of (i) the influence of various fiber types (steel fiber (SF), polypropylene (PP), and hybrid fibers (SF+PP)); (ii) exposure temperature (26°C and 600°C); and (iii) WWM strengthening. Exposure to a temperature of 600°C led to a significant reduction in the compressive strength, ranging from 23.7% to 53.3%, while the inclusion of fibers has a substantial effect on the compressive strength of concrete, regardless of fiber type, with an increased ratio reaching up to 34.7%. The finding also clearly shows that the strengthening of heat-damaged specimens with WWM jacketing resulted in a 38.8%, 4.9%, and 9.4% increase in compressive strength for SF, PP, and SF+PPF specimens, respectively, compared to unheated control specimens. The suggested approaches to strengthening, which involve the use of WWM jacketing with two layers, successfully restored and surpassed the initial concrete compressive strength of the specimens that were damaged due to exposure to high temperatures.
期刊介绍:
Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.