Factorization of a prime matrix in even blocks

Haoming Wang
{"title":"Factorization of a prime matrix in even blocks","authors":"Haoming Wang","doi":"arxiv-2408.00627","DOIUrl":null,"url":null,"abstract":"In this paper, a matrix is said to be prime if the row and column of this\nmatrix are both prime numbers. We establish various necessary and sufficient\nconditions for developing matrices into the sum of tensor products of prime\nmatrices. For example, if the diagonal of a matrix blocked evenly are pairwise\ncommutative, it yields such a decomposition. The computational complexity of\nmultiplication of these algorithms is shown to be $O(n^{5/2})$. In the section\n5, a decomposition is proved to hold if and only if every even natural number\ngreater than 2 is the sum of two prime numbers.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a matrix is said to be prime if the row and column of this matrix are both prime numbers. We establish various necessary and sufficient conditions for developing matrices into the sum of tensor products of prime matrices. For example, if the diagonal of a matrix blocked evenly are pairwise commutative, it yields such a decomposition. The computational complexity of multiplication of these algorithms is shown to be $O(n^{5/2})$. In the section 5, a decomposition is proved to hold if and only if every even natural number greater than 2 is the sum of two prime numbers.
素数矩阵的偶数块因式分解
在本文中,如果一个矩阵的行和列都是素数,则称该矩阵为素数矩阵。我们建立了将矩阵发展为素数矩阵的张量乘积之和的各种必要条件和充分条件。例如,如果矩阵的对角线均匀阻塞是成对互变的,就会产生这样的分解。这些算法的乘法计算复杂度为 $O(n^{5/2})$。在第 5 节中,证明了当且仅当每个大于 2 的偶数自然数是两个素数之和时,分解才成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信