Diameters of endomorphism monoids of chains

James East, Victoria Gould, Craig Miller, Thomas Quinn-Gregson
{"title":"Diameters of endomorphism monoids of chains","authors":"James East, Victoria Gould, Craig Miller, Thomas Quinn-Gregson","doi":"arxiv-2408.00416","DOIUrl":null,"url":null,"abstract":"The left and right diameters of a monoid are topological invariants defined\nin terms of suprema of lengths of derivation sequences with respect to finite\ngenerating sets for the universal left or right congruences. We compute these\nparameters for the endomorphism monoid $End(C)$ of a chain $C$. Specifically,\nif $C$ is infinite then the left diameter of $End(C)$ is 2, while the right\ndiameter is either 2 or 3, with the latter equal to 2 precisely when $C$ is a\nquotient of $C{\\setminus}\\{z\\}$ for some endpoint $z$. If $C$ is finite then so\nis $End(C),$ in which case the left and right diameters are 1 (if $C$ is\nnon-trivial) or 0.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The left and right diameters of a monoid are topological invariants defined in terms of suprema of lengths of derivation sequences with respect to finite generating sets for the universal left or right congruences. We compute these parameters for the endomorphism monoid $End(C)$ of a chain $C$. Specifically, if $C$ is infinite then the left diameter of $End(C)$ is 2, while the right diameter is either 2 or 3, with the latter equal to 2 precisely when $C$ is a quotient of $C{\setminus}\{z\}$ for some endpoint $z$. If $C$ is finite then so is $End(C),$ in which case the left and right diameters are 1 (if $C$ is non-trivial) or 0.
链的内态单元直径
单元的左直径和右直径是拓扑不变量,定义为与通用左或右全同的有限生成集有关的派生序列长度的上值。我们为链$C$的内态单元$End(C)$计算这些参数。具体地说,如果$C$是无限的,那么$End(C)$的左直径是2,而右直径要么是2要么是3,后者恰恰等于2,即当$C$是某个端点$z$的$C{\setminus}\{z\}$的上簇时。如果$C$是有限的,那么$End(C)$也是有限的,在这种情况下,左右直径分别为1(如果$C$不是三维的)或0.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信