Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Iman Moshiritabrizi, Jonathan P. McMullen, Brian M. Wyvratt and Kimberley B. McAuley
{"title":"Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization†","authors":"Iman Moshiritabrizi, Jonathan P. McMullen, Brian M. Wyvratt and Kimberley B. McAuley","doi":"10.1039/D4RE00210E","DOIUrl":null,"url":null,"abstract":"<p >A mechanistic model is developed to study the formation of 2,6-difluoropurine-9-THP from starting material 2,6-dichloropurine-9-THP. The 2,6-difluoropurine-9-THP product is an intermediate used in the synthesis of islatravir (MK-8591), a therapy for treatment of HIV. Kinetic parameters are estimated from 26 batch reactor experiments. An error-in-variables-model (EVM) approach is used for parameter estimation to address uncertainty in initial concentrations of trimethylamine (TMA), a gaseous reagent. A parameter subset selection method is used to determine that 33 out of 39 model parameters should be estimated along with 26 uncertain initial concentrations. The remaining six parameters are kept at their initial values to prevent overfitting of available data. EVM parameter estimates are compared with estimates obtained using a traditional weighted-least-squares approach that neglects input uncertainties. The EVM estimates provide a better fit to the data and, as shown using cross-validation, improved accuracy for model predictions. The resulting model and EVM parameter values are used to find reactor conditions that maximize product yield while obeying constraints on temperature, the initial ratio of TMA to starting material, batch time, and the volume of solvent. An optimal yield of 92.04% is predicted, which is higher than the yield of 90.26% at the best experimental conditions in the data set. Contour plots are used to highlight the insensitivity of the optimal yield to batch time and solvent volume, indicating that a yield of 91.83% could be obtained using a 50% lower batch time and 33% less solvent.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2669-2682"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00210e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A mechanistic model is developed to study the formation of 2,6-difluoropurine-9-THP from starting material 2,6-dichloropurine-9-THP. The 2,6-difluoropurine-9-THP product is an intermediate used in the synthesis of islatravir (MK-8591), a therapy for treatment of HIV. Kinetic parameters are estimated from 26 batch reactor experiments. An error-in-variables-model (EVM) approach is used for parameter estimation to address uncertainty in initial concentrations of trimethylamine (TMA), a gaseous reagent. A parameter subset selection method is used to determine that 33 out of 39 model parameters should be estimated along with 26 uncertain initial concentrations. The remaining six parameters are kept at their initial values to prevent overfitting of available data. EVM parameter estimates are compared with estimates obtained using a traditional weighted-least-squares approach that neglects input uncertainties. The EVM estimates provide a better fit to the data and, as shown using cross-validation, improved accuracy for model predictions. The resulting model and EVM parameter values are used to find reactor conditions that maximize product yield while obeying constraints on temperature, the initial ratio of TMA to starting material, batch time, and the volume of solvent. An optimal yield of 92.04% is predicted, which is higher than the yield of 90.26% at the best experimental conditions in the data set. Contour plots are used to highlight the insensitivity of the optimal yield to batch time and solvent volume, indicating that a yield of 91.83% could be obtained using a 50% lower batch time and 33% less solvent.

Abstract Image

Abstract Image

通过动力学建模、参数可估算性分析和反应优化,了解药物生产的工艺知识
建立了一个机理模型来研究从起始原料 2,6-二氯嘌呤-9-THP 生成 2,6-二氟嘌呤-9-THP 的过程。2,6-二氟嘌呤-9-THP 产物是用于合成治疗 HIV 的药物 islatravir (MK-8591) 的中间体。通过 26 次间歇反应器实验估算了动力学参数。参数估计采用了变量误差模型 (EVM) 方法,以解决气态试剂三甲胺 (TMA) 初始浓度的不确定性问题。采用参数子集选择法确定了 39 个模型参数中的 33 个应与 26 个不确定的初始浓度一起进行估算。其余 6 个参数保持初始值,以防止过度拟合可用数据。将 EVM 参数估算值与采用传统加权最小二乘法得出的估算值进行比较,后者忽略了输入的不确定性。EVM 估计值与数据的拟合度更高,交叉验证结果表明,EVM 估计值提高了模型预测的准确性。由此得出的模型和 EVM 参数值可用于寻找反应器条件,从而在遵守温度、TMA 与起始材料的初始比例、批次时间和溶剂体积等约束条件的同时,最大限度地提高产品收率。预测的最佳产率为 92.04%,高于数据集中最佳实验条件下的产率 90.26%。等高线图突出显示了最佳产率对配料时间和溶剂量的不敏感性,表明配料时间缩短 50%,溶剂量减少 33%,可获得 91.83% 的产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信