Infinite dimensional metapopulation SIS model with generalized incidence rate

Jean-François DelmasCERMICS, Kacem LefkiLAMA, CERMICS, Pierre-André ZittLAMA
{"title":"Infinite dimensional metapopulation SIS model with generalized incidence rate","authors":"Jean-François DelmasCERMICS, Kacem LefkiLAMA, CERMICS, Pierre-André ZittLAMA","doi":"arxiv-2408.00034","DOIUrl":null,"url":null,"abstract":"We consider an infinite-dimension SIS model introduced by Delmas, Dronnier\nand Zitt, with a more general incidence rate, and study its equilibria.\nUnsurprisingly, there exists at least one endemic equilibrium if and only if\nthe basic reproduction number is larger than 1. When the pathogen transmission\nexhibits one way propagation, it is possible to observe different possible\nendemic equilibria. We characterize in a general setting all the equilibria,\nusing a decomposition of the space into atoms, given by the transmission\noperator. We also prove that the proportion of infected individuals converges\nto an equilibrium, which is uniquely determined by the support of the initial\ncondition.We extend those results to infinite-dimensional SIS models with\nreservoir or with immigration.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an infinite-dimension SIS model introduced by Delmas, Dronnier and Zitt, with a more general incidence rate, and study its equilibria. Unsurprisingly, there exists at least one endemic equilibrium if and only if the basic reproduction number is larger than 1. When the pathogen transmission exhibits one way propagation, it is possible to observe different possible endemic equilibria. We characterize in a general setting all the equilibria, using a decomposition of the space into atoms, given by the transmission operator. We also prove that the proportion of infected individuals converges to an equilibrium, which is uniquely determined by the support of the initial condition.We extend those results to infinite-dimensional SIS models with reservoir or with immigration.
具有广义发病率的无限维元种群 SIS 模型
我们考虑了 Delmas、Dronnier 和 Zitt 引入的无限维 SIS 模型,该模型具有更一般的发病率,我们研究了它的均衡。我们通过将空间分解为原子(由传播操作符给出),在一般情况下描述了所有均衡的特征。我们还证明了受感染个体的比例会收敛到一个均衡状态,而这个均衡状态是由初始条件的支持度唯一决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信