Classification-based estimation of commutation instants for sensor fault-tolerant control in switched systems

IF 2.3 3区 工程技术 Q2 ACOUSTICS
Salwa Yahia, Saida Bedoui, Kamel Abderrahim
{"title":"Classification-based estimation of commutation instants for sensor fault-tolerant control in switched systems","authors":"Salwa Yahia, Saida Bedoui, Kamel Abderrahim","doi":"10.1177/10775463241267037","DOIUrl":null,"url":null,"abstract":"This paper introduces a new method for detecting switching instants and designing data-driven FTC for stochastic switched systems susceptible to sensor faults. The approach uses clustering algorithms and classification techniques to establish sub-models based on input-output databases. A data-driven approach is used to estimate the sensor fault, and controllers are generated for each mode to counteract the effects of the fault and minimise noise. The controller gains are determined using a novel LMIs derived from the general Lyapunov function. This approach’s effectiveness is proven through numerical analysis, which features two simulation examples of stochastic switched systems. The first example demonstrates a faulty stochastic switched system with two modes, while the second example depicts a practical application of vehicle rollover prevention systems.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"18 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241267037","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a new method for detecting switching instants and designing data-driven FTC for stochastic switched systems susceptible to sensor faults. The approach uses clustering algorithms and classification techniques to establish sub-models based on input-output databases. A data-driven approach is used to estimate the sensor fault, and controllers are generated for each mode to counteract the effects of the fault and minimise noise. The controller gains are determined using a novel LMIs derived from the general Lyapunov function. This approach’s effectiveness is proven through numerical analysis, which features two simulation examples of stochastic switched systems. The first example demonstrates a faulty stochastic switched system with two modes, while the second example depicts a practical application of vehicle rollover prevention systems.
基于分类的换向瞬时估计,用于开关系统中的传感器容错控制
本文介绍了一种新方法,用于检测开关瞬间,并为易受传感器故障影响的随机开关系统设计数据驱动的 FTC。该方法使用聚类算法和分类技术,在输入输出数据库的基础上建立子模型。采用数据驱动方法来估计传感器故障,并为每种模式生成控制器,以抵消故障的影响并将噪声降至最低。控制器增益是利用从一般 Lyapunov 函数中推导出的新型 LMI 确定的。这种方法的有效性通过数值分析得到了证明,其中包括两个随机切换系统的模拟实例。第一个例子演示了具有两种模式的故障随机切换系统,第二个例子则描述了车辆翻车预防系统的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信