Constructing Multiresolution Analysis via Wavelet Packets on Sobolev Space in Local Fields

Manish Kumar
{"title":"Constructing Multiresolution Analysis via Wavelet Packets on Sobolev Space in Local Fields","authors":"Manish Kumar","doi":"arxiv-2408.00028","DOIUrl":null,"url":null,"abstract":"We define Sobolev spaces $H^{\\mathfrak{s}}(K_q)$ over a local field $K_q$ of\nfinite characteristic $p>0$, where $q=p^c$ for a prime $p$ and $c\\in\n\\mathbb{N}$. This paper introduces novel fractal functions, such as the\nWeierstrass type and 3-adic Cantor type, as intriguing examples within these\nspaces and a few others. Employing prime elements, we develop a\nMulti-Resolution Analysis (MRA) and examine wavelet expansions, focusing on the\northogonality of both basic and fractal wavelet packets at various scales. We\nutilize convolution theory to construct Haar wavelet packets and demonstrate\nthe orthogonality of all discussed wavelet packets within\n$H^{\\mathfrak{s}}(K_q)$, enhancing the analytical capabilities of these Sobolev\nspaces.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define Sobolev spaces $H^{\mathfrak{s}}(K_q)$ over a local field $K_q$ of finite characteristic $p>0$, where $q=p^c$ for a prime $p$ and $c\in \mathbb{N}$. This paper introduces novel fractal functions, such as the Weierstrass type and 3-adic Cantor type, as intriguing examples within these spaces and a few others. Employing prime elements, we develop a Multi-Resolution Analysis (MRA) and examine wavelet expansions, focusing on the orthogonality of both basic and fractal wavelet packets at various scales. We utilize convolution theory to construct Haar wavelet packets and demonstrate the orthogonality of all discussed wavelet packets within $H^{\mathfrak{s}}(K_q)$, enhancing the analytical capabilities of these Sobolev spaces.
通过小波包在局部域的索波列夫空间上构建多分辨率分析
我们定义了无穷特征 $p>0$ 的局部域 $K_q$ 上的索波列夫空间 $H^{mathfrak{s}}(K_q)$,其中 $q=p^c$ 为素数 $p$ 且 $c\in\mathbb{N}$。本文介绍了一些新颖的分形函数,如维尔斯特拉斯型和 3-adic Cantor 型,作为这些空间和其他一些空间中有趣的例子。利用素元,我们开发了一种多分辨率分析(MRA),并研究了小波展开,重点是不同尺度下基本小波包和分形小波包的正交性。我们利用卷积理论来构建哈小波包,并证明了所有讨论过的小波包在$H^{/mathfrak{s}}(K_q)$内的正交性,从而增强了这些索波列夫空间的分析能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信