Chengcheng Xu, Suola Shao, Wenjian Wei, Shuhong Li, Nan Li
{"title":"Analysis of the application of CPMV model to the thermal comfort of passengers in high-speed rail carriages","authors":"Chengcheng Xu, Suola Shao, Wenjian Wei, Shuhong Li, Nan Li","doi":"10.1177/1420326x241268085","DOIUrl":null,"url":null,"abstract":"Due to the popularization of high-speed rail (HSR), there have been increasing concerns of passengers about the thermal comfort of HSR air conditioning. The corrected predicted mean vote (CPMV) model considering the impact of solar radiation on indoor thermal comfort has been previously proposed and validated for accuracy in office buildings. To verify the accuracy of the CPMV model in evaluating the thermal comfort of passengers inside HSR carriages, the field study on HSR in the Yangtze River Delta region of China was conducted in winter and summer. The results indicate thermal sensation vote values obtained from passengers fit well with CPMV values. When the temperature is high in summer and low in winter, the CPMV model ignores people’s ability to adapt and tolerate harsh environments. In addition, the thermal preference temperature of passengers in summer is 0.57°C higher than the neutral temperature, indicating that there is an overcooling situation in summer. The study recommends to lower the set temperature of summer air conditioning in HSR. This study contributes to the promotion of the CPMV model on HSR and provides technical support for the design of air-conditioning systems for HSR carriages from the perspective of thermal comfort of passengers.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":"6 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x241268085","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the popularization of high-speed rail (HSR), there have been increasing concerns of passengers about the thermal comfort of HSR air conditioning. The corrected predicted mean vote (CPMV) model considering the impact of solar radiation on indoor thermal comfort has been previously proposed and validated for accuracy in office buildings. To verify the accuracy of the CPMV model in evaluating the thermal comfort of passengers inside HSR carriages, the field study on HSR in the Yangtze River Delta region of China was conducted in winter and summer. The results indicate thermal sensation vote values obtained from passengers fit well with CPMV values. When the temperature is high in summer and low in winter, the CPMV model ignores people’s ability to adapt and tolerate harsh environments. In addition, the thermal preference temperature of passengers in summer is 0.57°C higher than the neutral temperature, indicating that there is an overcooling situation in summer. The study recommends to lower the set temperature of summer air conditioning in HSR. This study contributes to the promotion of the CPMV model on HSR and provides technical support for the design of air-conditioning systems for HSR carriages from the perspective of thermal comfort of passengers.
期刊介绍:
Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).