MTDB: an LSM-tree-based key-value store using a multi-tree structure to improve read performance

Xinwei Lin, Yubiao Pan, Wenjuan Feng, Huizhen Zhang, Mingwei Lin
{"title":"MTDB: an LSM-tree-based key-value store using a multi-tree structure to improve read performance","authors":"Xinwei Lin, Yubiao Pan, Wenjuan Feng, Huizhen Zhang, Mingwei Lin","doi":"10.1007/s11227-024-06382-5","DOIUrl":null,"url":null,"abstract":"<p>Traditional LSM-tree-based key-value storage systems face significant read amplification issues due to the multi-level structure of LSM-tree, the unordered SSTable files in Level 0, and the lack of an in-memory index structure for key-value pairs. We observed that, under the influence of workloads with locality features, key-value pairs exhibit a range-specific access intensity. Addressing the three reasons for LSM-tree read amplification, we have utilized the range-specific access intensity of workload to propose a multi-tree structure consisting of a B+ tree, a single-level hot tree, and an LSM-tree with partition-based Level 0. This aims to enhance the read performance of LSM-tree-based key-value storage systems. We designed the prototype, MTDB, based on LevelDB. The experimental results show that MTDB’s read performance is 1.62× to 2.02× that of LevelDB, and it approaches or exceeds the read performance of KVell and Bourbon while reducing memory overhead by 58.85%–86%.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06382-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional LSM-tree-based key-value storage systems face significant read amplification issues due to the multi-level structure of LSM-tree, the unordered SSTable files in Level 0, and the lack of an in-memory index structure for key-value pairs. We observed that, under the influence of workloads with locality features, key-value pairs exhibit a range-specific access intensity. Addressing the three reasons for LSM-tree read amplification, we have utilized the range-specific access intensity of workload to propose a multi-tree structure consisting of a B+ tree, a single-level hot tree, and an LSM-tree with partition-based Level 0. This aims to enhance the read performance of LSM-tree-based key-value storage systems. We designed the prototype, MTDB, based on LevelDB. The experimental results show that MTDB’s read performance is 1.62× to 2.02× that of LevelDB, and it approaches or exceeds the read performance of KVell and Bourbon while reducing memory overhead by 58.85%–86%.

Abstract Image

MTDB:基于 LSM 树的键值存储,使用多树结构提高读取性能
由于 LSM 树的多级结构、第 0 级中无序的 SSTable 文件以及键值对缺乏内存索引结构,传统的基于 LSM 树的键值存储系统面临着严重的读取放大问题。我们观察到,在具有位置特征的工作负载影响下,键值对表现出特定范围的访问强度。针对 LSM 树读取放大的三个原因,我们利用工作负载的特定范围访问强度,提出了一种由 B+ 树、单级热树和基于分区的 0 级 LSM 树组成的多树结构。这样做的目的是提高基于 LSM 树的键值存储系统的读取性能。我们在 LevelDB 的基础上设计了 MTDB 原型。实验结果表明,MTDB 的读取性能是 LevelDB 的 1.62 倍到 2.02 倍,接近或超过了 KVell 和 Bourbon 的读取性能,同时减少了 58.85%-86% 的内存开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信