Homeomorphic Sobolev extensions of parametrizations of Jordan curves

Ondrěj Bouchala, Jarmo Jääskeläinen, Pekka Koskela, Haiqing Xu, Xilin Zhou
{"title":"Homeomorphic Sobolev extensions of parametrizations of Jordan curves","authors":"Ondrěj Bouchala, Jarmo Jääskeläinen, Pekka Koskela, Haiqing Xu, Xilin Zhou","doi":"arxiv-2408.00506","DOIUrl":null,"url":null,"abstract":"Each homeomorphic parametrization of a Jordan curve via the unit circle\nextends to a homeomorphism of the entire plane. It is a natural question to ask\nif such a homeomorphism can be chosen so as to have some Sobolev regularity.\nThis prompts the simplified question: for a homeomorphic embedding of the unit\ncircle into the plane, when can we find a homeomorphism from the unit disk that\nhas the same boundary values and integrable first-order distributional\nderivatives? We give the optimal geometric criterion for the interior Jordan domain so\nthat there exists a Sobolev homeomorphic extension for any homeomorphic\nparametrization of the Jordan curve. The problem is partially motivated by\ntrying to understand which boundary values can correspond to deformations of\nfinite energy.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Each homeomorphic parametrization of a Jordan curve via the unit circle extends to a homeomorphism of the entire plane. It is a natural question to ask if such a homeomorphism can be chosen so as to have some Sobolev regularity. This prompts the simplified question: for a homeomorphic embedding of the unit circle into the plane, when can we find a homeomorphism from the unit disk that has the same boundary values and integrable first-order distributional derivatives? We give the optimal geometric criterion for the interior Jordan domain so that there exists a Sobolev homeomorphic extension for any homeomorphic parametrization of the Jordan curve. The problem is partially motivated by trying to understand which boundary values can correspond to deformations of finite energy.
约旦曲线参数化的同态索波列夫扩展
乔丹曲线通过单位圆的每个同构参数都会延伸到整个平面的同构。这就提出了一个简化的问题:对于单位圆到平面的同构嵌入,我们什么时候能从单位圆盘找到一个具有相同边界值和可积分一阶分布求导的同构?我们给出了内部乔丹域的最优几何准则,使得乔丹曲线的任何同态参数化都存在一个索波列夫同态扩展。这个问题的部分动机是试图理解哪些边界值可以对应于无穷能量的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信