{"title":"Block-Diagonalization of Quaternion Circulant Matrices with Applications","authors":"Junjun Pan, Michael K. Ng","doi":"10.1137/23m1552115","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1429-1454, September 2024. <br/> Abstract. It is well known that a complex circulant matrix can be diagonalized by a discrete Fourier matrix with imaginary unit [math]. The main aim of this paper is to demonstrate that a quaternion circulant matrix cannot be diagonalized by a discrete quaternion Fourier matrix with three imaginary units [math], [math], and [math]. Instead, a quaternion circulant matrix can be block-diagonalized into 1-by-1 block and 2-by-2 block matrices by permuted discrete quaternion Fourier transform matrix. With such a block-diagonalized form, the inverse of a quaternion circulant matrix can be determined efficiently similarly to the inverse of a complex circulant matrix. We make use of this block-diagonalized form to study quaternion tensor singular value decomposition of quaternion tensors where the entries are quaternion numbers. The applications, including computing the inverse of a quaternion circulant matrix and solving quaternion Toeplitz systems arising from linear prediction of quaternion signals, are employed to validate the efficiency of our proposed block- diagonalized results.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"49 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552115","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1429-1454, September 2024. Abstract. It is well known that a complex circulant matrix can be diagonalized by a discrete Fourier matrix with imaginary unit [math]. The main aim of this paper is to demonstrate that a quaternion circulant matrix cannot be diagonalized by a discrete quaternion Fourier matrix with three imaginary units [math], [math], and [math]. Instead, a quaternion circulant matrix can be block-diagonalized into 1-by-1 block and 2-by-2 block matrices by permuted discrete quaternion Fourier transform matrix. With such a block-diagonalized form, the inverse of a quaternion circulant matrix can be determined efficiently similarly to the inverse of a complex circulant matrix. We make use of this block-diagonalized form to study quaternion tensor singular value decomposition of quaternion tensors where the entries are quaternion numbers. The applications, including computing the inverse of a quaternion circulant matrix and solving quaternion Toeplitz systems arising from linear prediction of quaternion signals, are employed to validate the efficiency of our proposed block- diagonalized results.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.