A neural network approach to running high-precision atomic computations

Pavlo Bilous, Charles Cheung, Marianna Safronova
{"title":"A neural network approach to running high-precision atomic computations","authors":"Pavlo Bilous, Charles Cheung, Marianna Safronova","doi":"arxiv-2408.00477","DOIUrl":null,"url":null,"abstract":"Modern applications of atomic physics, including the determination of\nfrequency standards, and the analysis of astrophysical spectra, require\nprediction of atomic properties with exquisite accuracy. For complex atomic\nsystems, high-precision calculations are a major challenge due to the\nexponential scaling of the involved electronic configuration sets. This\nexacerbates the problem of required computational resources for these\ncomputations, and makes indispensable the development of approaches to select\nthe most important configurations out of otherwise intractably huge sets. We\nhave developed a neural network (NN) tool for running high-precision atomic\nconfiguration interaction (CI) computations with iterative selection of the\nmost important configurations. Integrated with the established pCI atomic\ncodes, our approach results in computations with significantly reduced\ncomputational requirements in comparison with those without NN support. We\nshowcase a number of NN-supported computations for the energy levels of\nFe$^{16+}$ and Ni$^{12+}$, and demonstrate that our approach can be reliably\nused and automated for solving specific computational problems for a wide\nvariety of systems.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern applications of atomic physics, including the determination of frequency standards, and the analysis of astrophysical spectra, require prediction of atomic properties with exquisite accuracy. For complex atomic systems, high-precision calculations are a major challenge due to the exponential scaling of the involved electronic configuration sets. This exacerbates the problem of required computational resources for these computations, and makes indispensable the development of approaches to select the most important configurations out of otherwise intractably huge sets. We have developed a neural network (NN) tool for running high-precision atomic configuration interaction (CI) computations with iterative selection of the most important configurations. Integrated with the established pCI atomic codes, our approach results in computations with significantly reduced computational requirements in comparison with those without NN support. We showcase a number of NN-supported computations for the energy levels of Fe$^{16+}$ and Ni$^{12+}$, and demonstrate that our approach can be reliably used and automated for solving specific computational problems for a wide variety of systems.
运行高精度原子计算的神经网络方法
原子物理学的现代应用,包括频率标准的确定和天体物理光谱的分析,都要求对原子特性进行精确的预测。对于复杂的原子系统来说,由于所涉及的电子构型集的指数缩放,高精度计算是一项重大挑战。这加剧了这些计算所需的计算资源问题,因此必须开发一种方法,从原本难以解决的巨大集合中选择最重要的构型。我们开发了一种神经网络(NN)工具,用于运行高精度原子配置相互作用(CI)计算,并对最重要的配置进行迭代选择。我们的方法与已建立的 pCI 原子代码相结合,与没有神经网络支持的计算相比,大大降低了计算要求。我们展示了一些针对Fe$^{16+}$和Ni$^{12+}$能级的NN支持计算,并证明我们的方法可以可靠地用于解决各种系统的特定计算问题并实现自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信