{"title":"Design and modeling of a double rod magnetorheological grease damper","authors":"Xudan Ye, Jiqiang Dong, Baolin Wu, Ouyang Qing, Jiong Wang, Guang Zhang","doi":"10.1007/s12206-024-0705-9","DOIUrl":null,"url":null,"abstract":"<p>In order to improve the problem of poor sedimentation and easy leakage when applied to MR devices of magnetorheological (MR) fluid, this work made a magnetorheological grease (MRG) material with 70 % carbonyl iron powder and used Anton Paar rheometer to test its flow curve under different currents. The Bingham model is selected and the Origin software is used for fitting calculation. In addition, due to the advantages of rheological properties of MRG, the double rod MRG damper applied to the vibration reduction system was designed. The calculation of the main component parameters and the dimensions of the magnetic field Road size were conducted during the design process. After the physical completion of the MRG damper, its mechanical performance was tested, and the results showed that the maximum damping force reached 1.1 kN when the current was 1.8 A. Subsequently, the Bouc Wen model and Dahl model were introduced to describe the nonlinear behavior of the magnetorheological grease damper. The prediction accuracy of the two models was compared using a coefficient of determination, and it was found that the Bouc Wen model can more accurately and efficiently simulate the dynamic characteristics of the magnetorheological grease damper, with a coefficient of determination value above 0.99. Finally, the relationship between model parameters and current was established through least squares fitting, and most of the parameters were fitted with a cubic polynomial relationship with current.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0705-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to improve the problem of poor sedimentation and easy leakage when applied to MR devices of magnetorheological (MR) fluid, this work made a magnetorheological grease (MRG) material with 70 % carbonyl iron powder and used Anton Paar rheometer to test its flow curve under different currents. The Bingham model is selected and the Origin software is used for fitting calculation. In addition, due to the advantages of rheological properties of MRG, the double rod MRG damper applied to the vibration reduction system was designed. The calculation of the main component parameters and the dimensions of the magnetic field Road size were conducted during the design process. After the physical completion of the MRG damper, its mechanical performance was tested, and the results showed that the maximum damping force reached 1.1 kN when the current was 1.8 A. Subsequently, the Bouc Wen model and Dahl model were introduced to describe the nonlinear behavior of the magnetorheological grease damper. The prediction accuracy of the two models was compared using a coefficient of determination, and it was found that the Bouc Wen model can more accurately and efficiently simulate the dynamic characteristics of the magnetorheological grease damper, with a coefficient of determination value above 0.99. Finally, the relationship between model parameters and current was established through least squares fitting, and most of the parameters were fitted with a cubic polynomial relationship with current.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.