Automated visual inspection of particle defect in semiconductor packaging

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Joonsub Park, Jeonghoon Lee
{"title":"Automated visual inspection of particle defect in semiconductor packaging","authors":"Joonsub Park, Jeonghoon Lee","doi":"10.1007/s12206-024-0740-6","DOIUrl":null,"url":null,"abstract":"<p>In semiconductor production processes, controlling and inspecting contamination particle defects are extremely important because even a small particle within any stage of the process can remarkably affect the quality of the final products. Particle contamination can be critically detrimental in every process, thereby reducing production yield in semiconductor processes. In this study, we investigated the correlation between the actual defect rate and the probability of contamination particle defect observed by a commercially available automated visual inspection (AVI) system in semiconductor backend processes. During mass production, we observed that contamination particles produced in a thermal process were transported to various locations and caused defects. Particles sized 45 µm were observed most frequently compared with the actual contamination particles and AVI images. To effectively detect particle defect on wafer surfaces, particles smaller than 100 µm should also be considered. The hallmark of this study is that we effectively controlled particles larger than 50 µm using our AVI equipment after the die attach approach to reduce defects in the wire bonding process in advance. We provide monitoring methods for contamination control of particles present in the thermal process on the AVI system applied in mass production processes. Finally, we suggest a plausible entrainment pathway of the contamination particles and present visual images of actual contamination particles observed using an optical microscope.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0740-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In semiconductor production processes, controlling and inspecting contamination particle defects are extremely important because even a small particle within any stage of the process can remarkably affect the quality of the final products. Particle contamination can be critically detrimental in every process, thereby reducing production yield in semiconductor processes. In this study, we investigated the correlation between the actual defect rate and the probability of contamination particle defect observed by a commercially available automated visual inspection (AVI) system in semiconductor backend processes. During mass production, we observed that contamination particles produced in a thermal process were transported to various locations and caused defects. Particles sized 45 µm were observed most frequently compared with the actual contamination particles and AVI images. To effectively detect particle defect on wafer surfaces, particles smaller than 100 µm should also be considered. The hallmark of this study is that we effectively controlled particles larger than 50 µm using our AVI equipment after the die attach approach to reduce defects in the wire bonding process in advance. We provide monitoring methods for contamination control of particles present in the thermal process on the AVI system applied in mass production processes. Finally, we suggest a plausible entrainment pathway of the contamination particles and present visual images of actual contamination particles observed using an optical microscope.

对半导体封装中的颗粒缺陷进行自动视觉检测
在半导体生产流程中,控制和检测污染颗粒缺陷极为重要,因为在流程的任何阶段,即使是很小的颗粒也会对最终产品的质量产生显著影响。微粒污染在每个流程中都可能造成严重危害,从而降低半导体流程的产量。在这项研究中,我们调查了实际缺陷率与商用自动视觉检测(AVI)系统在半导体后端流程中观察到的污染颗粒缺陷概率之间的相关性。在批量生产过程中,我们观察到在热加工过程中产生的污染颗粒被传送到不同的位置并造成缺陷。与实际污染颗粒和 AVI 图像相比,最常观察到的颗粒大小为 45 µm。为了有效检测晶圆表面的颗粒缺陷,还应考虑小于 100 微米的颗粒。本研究的特点是,我们在芯片贴装方法之后使用 AVI 设备有效控制了大于 50 µm 的颗粒,从而提前减少了焊线过程中的缺陷。我们提供了用于大规模生产过程中 AVI 系统热处理过程中颗粒污染控制的监测方法。最后,我们提出了污染颗粒的合理夹带途径,并展示了使用光学显微镜观察到的实际污染颗粒的视觉图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信