Shanshan Zhao, Xinxin Wang, Wenkang Zhao, Yanhong liang, Xiaoxiao Yan, Gang Tang, Xiaozhen Deng, Yuwen Li
{"title":"Simulation and experiment of valveless micropumps driven by piezoelectric–heating coupling for microfluidics","authors":"Shanshan Zhao, Xinxin Wang, Wenkang Zhao, Yanhong liang, Xiaoxiao Yan, Gang Tang, Xiaozhen Deng, Yuwen Li","doi":"10.1007/s12206-024-0721-9","DOIUrl":null,"url":null,"abstract":"<p>Valveless micropump, important components of a microfluidic system, are widely used in biomedicine, chemical industry, microelectronics cooling and other fields. At present, the driving mode of micropump is mainly single drive, resulting in insufficient driving force and low output pressure. In this study, the overall structure of valveless micropump is designed, and the driving component and the internal inlet and outlet are compared and analyzed by finite element simulation. Moreover, the valveless micropump prototype is processed and developed for performance test. Results show that the output performance of the valveless micropump driven by piezoelectric and heating coupling is better than that of the piezoelectric micropump. When the ambient temperature was 20 °C, 140 V voltage and 40 Hz frequency were added to the piezoelectric component, as well as a 3A current to the heating plate. Furthermore, the liquid flow rate through the microneedle was 0.98 µl/s after a period of time.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0721-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Valveless micropump, important components of a microfluidic system, are widely used in biomedicine, chemical industry, microelectronics cooling and other fields. At present, the driving mode of micropump is mainly single drive, resulting in insufficient driving force and low output pressure. In this study, the overall structure of valveless micropump is designed, and the driving component and the internal inlet and outlet are compared and analyzed by finite element simulation. Moreover, the valveless micropump prototype is processed and developed for performance test. Results show that the output performance of the valveless micropump driven by piezoelectric and heating coupling is better than that of the piezoelectric micropump. When the ambient temperature was 20 °C, 140 V voltage and 40 Hz frequency were added to the piezoelectric component, as well as a 3A current to the heating plate. Furthermore, the liquid flow rate through the microneedle was 0.98 µl/s after a period of time.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.