{"title":"Aeroelasticity design and evaluation methodologies for gas turbine axial compressor: focus on fluttering phenomena","authors":"Hyun-Su Kang, Youn-Jea Kim","doi":"10.1007/s12206-024-2108-3","DOIUrl":null,"url":null,"abstract":"<p>The consideration of aeroelasticity is essential during the development phase of axial flow compressors, and its implications should be factored into the operational planning of gas turbines. While synchronous vibration can typically be mitigated during the blade design stage, the complete avoidance of non-synchronous vibration remains a challenge, prompting ongoing research efforts for predictive solutions. The study utilized an industrial gas turbine axial compressor with 1.5-stage blades for aerodynamic performance and flutter assessments. The calculated results were comprehensively compared with those of 1.5-stage scaled rig test. The comparative analysis demonstrated a strong alignment between predictions regarding aerodynamic performance and the presence or absence of flutter. Furthermore, unsteady flutter calculations were conducted for cases both with and without flutter, allowing for a detailed analysis of the factors contributing to flutter occurrence. Through this investigation, the study established methodologies for aeroelastic design and evaluation, along with a proposed approach for preventing flutter generation.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-2108-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The consideration of aeroelasticity is essential during the development phase of axial flow compressors, and its implications should be factored into the operational planning of gas turbines. While synchronous vibration can typically be mitigated during the blade design stage, the complete avoidance of non-synchronous vibration remains a challenge, prompting ongoing research efforts for predictive solutions. The study utilized an industrial gas turbine axial compressor with 1.5-stage blades for aerodynamic performance and flutter assessments. The calculated results were comprehensively compared with those of 1.5-stage scaled rig test. The comparative analysis demonstrated a strong alignment between predictions regarding aerodynamic performance and the presence or absence of flutter. Furthermore, unsteady flutter calculations were conducted for cases both with and without flutter, allowing for a detailed analysis of the factors contributing to flutter occurrence. Through this investigation, the study established methodologies for aeroelastic design and evaluation, along with a proposed approach for preventing flutter generation.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.