Finding the future in digitally mediated ruin: #nostalgiacores and the algorithmic culture of digital platforms

IF 2.4 2区 文学 Q1 COMMUNICATION
Maria Gemma Brown, Nicholas Carah, Xue Ying (Jane) Tan, Daniel Angus, Jean Burgess
{"title":"Finding the future in digitally mediated ruin: #nostalgiacores and the algorithmic culture of digital platforms","authors":"Maria Gemma Brown, Nicholas Carah, Xue Ying (Jane) Tan, Daniel Angus, Jean Burgess","doi":"10.1177/13548565241270669","DOIUrl":null,"url":null,"abstract":"The #nostalgiacores are a series of interrelated hashtags on Instagram and TikTok where users recirculate content from the digital and consumer cultures of the 1990s and 2000s – childhood play centres, dead malls, long-gone toys, and superseded game consoles and phones. In this article, we explore these digital cultures using a critical platform studies approach that involves a combination of network analysis and close textual analysis augmented with purpose-built machine vision tools. We scrape a collection of 359,150 images from Instagram that used one or more of 30 ‘-cores’ hashtags (such as #y2kcore, #webcore and #childhoodcore) that we chose following a period of immersive qualitative investigation of #nostalgiacore scenes on Instagram during 2021 and 2022. 10,000 Instagram images were then randomly selected and processed using a purpose-built unsupervised machine vision model that clusters images together based on their similarities. This research is part of a multi-year project where we develop hybrid digital methods for critically simulating and exploring the interplay between our image-making practices and the algorithmic systems that cluster and curate them. By combining computational approaches with critical platform and cultural studies approaches we speculatively explore both practices of curation and their interplay with the algorithmic classification and recommendation models of digital platforms. Our platform-oriented mode of textual analysis helps us to explore how our digital cultures are both symbolically and technically nostalgic. Instagram users in the #nostalgiacore scene recirculate images from the past as part of practices of critically reflecting on digital platforms and consumer cultures. At the same time those images are recuperated as archives used to train the algorithmic models that optimise attention on digital media platforms like Instagram.","PeriodicalId":47242,"journal":{"name":"Convergence-The International Journal of Research Into New Media Technologies","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Convergence-The International Journal of Research Into New Media Technologies","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1177/13548565241270669","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

Abstract

The #nostalgiacores are a series of interrelated hashtags on Instagram and TikTok where users recirculate content from the digital and consumer cultures of the 1990s and 2000s – childhood play centres, dead malls, long-gone toys, and superseded game consoles and phones. In this article, we explore these digital cultures using a critical platform studies approach that involves a combination of network analysis and close textual analysis augmented with purpose-built machine vision tools. We scrape a collection of 359,150 images from Instagram that used one or more of 30 ‘-cores’ hashtags (such as #y2kcore, #webcore and #childhoodcore) that we chose following a period of immersive qualitative investigation of #nostalgiacore scenes on Instagram during 2021 and 2022. 10,000 Instagram images were then randomly selected and processed using a purpose-built unsupervised machine vision model that clusters images together based on their similarities. This research is part of a multi-year project where we develop hybrid digital methods for critically simulating and exploring the interplay between our image-making practices and the algorithmic systems that cluster and curate them. By combining computational approaches with critical platform and cultural studies approaches we speculatively explore both practices of curation and their interplay with the algorithmic classification and recommendation models of digital platforms. Our platform-oriented mode of textual analysis helps us to explore how our digital cultures are both symbolically and technically nostalgic. Instagram users in the #nostalgiacore scene recirculate images from the past as part of practices of critically reflecting on digital platforms and consumer cultures. At the same time those images are recuperated as archives used to train the algorithmic models that optimise attention on digital media platforms like Instagram.
在以数字为媒介的废墟中寻找未来:数字平台的算法文化与 #Nostalgiacores
在 Instagram 和 TikTok 上,#nostalgiacores 是一系列相互关联的标签,在这些标签上,用户重新传播着 20 世纪 90 年代和 2000 年代数字和消费文化的内容--童年的游戏中心、死气沉沉的商场、消失已久的玩具以及过时的游戏机和手机。在本文中,我们采用一种批判性平台研究方法来探索这些数字文化,该方法结合了网络分析和文本分析,并使用了专用的机器视觉工具。我们从 Instagram 搜刮了 359,150 张图片,这些图片使用了 30 个"-cores "标签(如 #y2kcore、#webcore 和 #childhoodcore)中的一个或多个标签,这些标签是我们在 2021 年和 2022 年期间对 Instagram 上的 #nostalgiacore 场景进行沉浸式定性调查后选择的。随后,我们随机选取了 10,000 张 Instagram 图像,并使用专门建立的无监督机器视觉模型进行处理,该模型可根据图像的相似性将图像聚类在一起。这项研究是一个多年期项目的一部分,我们在该项目中开发了混合数字方法,用于批判性地模拟和探索我们的图像制作实践与聚类和策划图像的算法系统之间的相互作用。通过将计算方法与批判性平台和文化研究方法相结合,我们对策划实践及其与数字平台的算法分类和推荐模型之间的相互作用进行了推测性探索。我们以平台为导向的文本分析模式有助于我们探索我们的数字文化是如何在象征意义上和技术上怀旧的。在 #nostalgiacore 场景中,Instagram 用户将过去的图片作为对数字平台和消费文化进行批判性反思的实践的一部分重新传播。与此同时,这些图片也被作为档案重新保存起来,用于训练算法模型,以优化 Instagram 等数字媒体平台上的注意力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
7.10%
发文量
98
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信