OTCliM: generating a near-surface climatology of optical turbulence strength ($C_n^2$) using gradient boosting

Maximilian Pierzyna, Sukanta Basu, Rudolf Saathof
{"title":"OTCliM: generating a near-surface climatology of optical turbulence strength ($C_n^2$) using gradient boosting","authors":"Maximilian Pierzyna, Sukanta Basu, Rudolf Saathof","doi":"arxiv-2408.00520","DOIUrl":null,"url":null,"abstract":"This study introduces OTCliM (Optical Turbulence Climatology using Machine\nlearning), a novel approach for deriving comprehensive climatologies of\natmospheric optical turbulence strength ($C_n^2$) using gradient boosting\nmachines. OTCliM addresses the challenge of efficiently obtaining reliable\nsite-specific $C_n^2$ climatologies, crucial for ground-based astronomy and\nfree-space optical communication. Using gradient boosting machines and global\nreanalysis data, OTCliM extrapolates one year of measured $C_n^2$ into a\nmulti-year time series. We assess OTCliM's performance using $C_n^2$ data from\n17 diverse stations in New York State, evaluating temporal extrapolation\ncapabilities and geographical generalization. Our results demonstrate accurate\npredictions of four held-out years of $C_n^2$ across various sites, including\ncomplex urban environments, outperforming traditional analytical models.\nNon-urban models also show good geographical generalization compared to urban\nmodels, which captured non-general site-specific dependencies. A feature\nimportance analysis confirms the physical consistency of the trained models. It\nalso indicates the potential to uncover new insights into the physical\nprocesses governing $C_n^2$ from data. OTCliM's ability to derive reliable\n$C_n^2$ climatologies from just one year of observations can potentially reduce\nresources required for future site surveys or enable studies for additional\nsites with the same resources.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"217 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces OTCliM (Optical Turbulence Climatology using Machine learning), a novel approach for deriving comprehensive climatologies of atmospheric optical turbulence strength ($C_n^2$) using gradient boosting machines. OTCliM addresses the challenge of efficiently obtaining reliable site-specific $C_n^2$ climatologies, crucial for ground-based astronomy and free-space optical communication. Using gradient boosting machines and global reanalysis data, OTCliM extrapolates one year of measured $C_n^2$ into a multi-year time series. We assess OTCliM's performance using $C_n^2$ data from 17 diverse stations in New York State, evaluating temporal extrapolation capabilities and geographical generalization. Our results demonstrate accurate predictions of four held-out years of $C_n^2$ across various sites, including complex urban environments, outperforming traditional analytical models. Non-urban models also show good geographical generalization compared to urban models, which captured non-general site-specific dependencies. A feature importance analysis confirms the physical consistency of the trained models. It also indicates the potential to uncover new insights into the physical processes governing $C_n^2$ from data. OTCliM's ability to derive reliable $C_n^2$ climatologies from just one year of observations can potentially reduce resources required for future site surveys or enable studies for additional sites with the same resources.
OTCliM:利用梯度提升技术生成光学湍流强度($C_n^2$)的近地表气候图
本研究介绍了 OTCliM(利用机器学习的光学湍流气候学),这是一种利用梯度提升机器推导大气光学湍流强度($C_n^2$)综合气候学的新方法。OTCliM 解决了高效获取可靠的特定站点$C_n^2$气候学的难题,这对地基天文学和自由空间光通信至关重要。OTCliM 利用梯度提升机器和全球分析数据,将一年的测量值 C_n^2$ 推断为多年的时间序列。我们使用纽约州 17 个不同站点的 C_n^2$ 数据评估了 OTCliM 的性能,评估了时间外推能力和地理泛化能力。我们的结果表明,OTCliM 能够准确预测不同站点(包括复杂的城市环境)四年的 $C_n^2$,优于传统的分析模型。与城市模型相比,非城市模型也显示出良好的地理泛化能力,因为城市模型捕捉到了非一般站点的特定依赖性。特征重要性分析证实了训练模型的物理一致性。这也表明,我们有可能从数据中发现支配 $C_n^2$ 的物理过程的新见解。OTCliM 能够从一年的观测数据中推导出可靠的 C_n^2$ 气候学数据,这有可能减少未来站点调查所需的资源,或在资源相同的情况下对更多站点进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信