CT-based Anomaly Detection of Liver Tumors Using Generative Diffusion Prior

Yongyi Shi, Chuang Niu, Amber L. Simpson, Bruno De Man, Richard Do, Ge Wang
{"title":"CT-based Anomaly Detection of Liver Tumors Using Generative Diffusion Prior","authors":"Yongyi Shi, Chuang Niu, Amber L. Simpson, Bruno De Man, Richard Do, Ge Wang","doi":"arxiv-2408.00092","DOIUrl":null,"url":null,"abstract":"CT is a main modality for imaging liver diseases, valuable in detecting and\nlocalizing liver tumors. Traditional anomaly detection methods analyze\nreconstructed images to identify pathological structures. However, these\nmethods may produce suboptimal results, overlooking subtle differences among\nvarious tissue types. To address this challenge, here we employ generative\ndiffusion prior to inpaint the liver as the reference facilitating anomaly\ndetection. Specifically, we use an adaptive threshold to extract a mask of\nabnormal regions, which are then inpainted using a diffusion prior to\ncalculating an anomaly score based on the discrepancy between the original CT\nimage and the inpainted counterpart. Our methodology has been tested on two\nliver CT datasets, demonstrating a significant improvement in detection\naccuracy, with a 7.9% boost in the area under the curve (AUC) compared to the\nstate-of-the-art. This performance gain underscores the potential of our\napproach to refine the radiological assessment of liver diseases.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CT is a main modality for imaging liver diseases, valuable in detecting and localizing liver tumors. Traditional anomaly detection methods analyze reconstructed images to identify pathological structures. However, these methods may produce suboptimal results, overlooking subtle differences among various tissue types. To address this challenge, here we employ generative diffusion prior to inpaint the liver as the reference facilitating anomaly detection. Specifically, we use an adaptive threshold to extract a mask of abnormal regions, which are then inpainted using a diffusion prior to calculating an anomaly score based on the discrepancy between the original CT image and the inpainted counterpart. Our methodology has been tested on two liver CT datasets, demonstrating a significant improvement in detection accuracy, with a 7.9% boost in the area under the curve (AUC) compared to the state-of-the-art. This performance gain underscores the potential of our approach to refine the radiological assessment of liver diseases.
利用生成扩散先验进行基于 CT 的肝脏肿瘤异常检测
CT 是肝脏疾病成像的主要方式,在检测和定位肝脏肿瘤方面具有重要价值。传统的异常检测方法通过分析重建图像来识别病理结构。然而,这些方法可能会产生次优结果,忽略不同组织类型之间的细微差别。为了应对这一挑战,我们在这里采用了先生成扩散的方法,以肝脏为参照物进行内画,从而促进异常检测。具体来说,我们使用自适应阈值来提取正常区域的掩码,然后使用扩散先验法对这些区域进行内绘,根据原始 CT 图像与内绘对应图像之间的差异计算出异常分数。我们的方法已在两个肝脏 CT 数据集上进行了测试,结果表明检测精度有了显著提高,与最先进的方法相比,曲线下面积(AUC)提高了 7.9%。这种性能的提高凸显了我们的方法在完善肝脏疾病放射学评估方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信