Highly-efficient electron ponderomotive acceleration in underdense plasmas

Lorenzo Martelli, Olena Kononenko, Igor Andriyash, Jonathan Wheeler, Julien Gautier, Jean-Philippe Goddet, Amar Tafzi, Ronan Lahaye, Camilla Giaccaglia, Alessandro Flacco, Vidmantas Tomkus, Migle Mackevičiūtė, Juozas Dudutis, Valdemar Stankevic, Paulius Gečys, Gediminas Račiukaitis, Henri Kraft, Xuan Quyen Dinh, Cédric Thaury
{"title":"Highly-efficient electron ponderomotive acceleration in underdense plasmas","authors":"Lorenzo Martelli, Olena Kononenko, Igor Andriyash, Jonathan Wheeler, Julien Gautier, Jean-Philippe Goddet, Amar Tafzi, Ronan Lahaye, Camilla Giaccaglia, Alessandro Flacco, Vidmantas Tomkus, Migle Mackevičiūtė, Juozas Dudutis, Valdemar Stankevic, Paulius Gečys, Gediminas Račiukaitis, Henri Kraft, Xuan Quyen Dinh, Cédric Thaury","doi":"arxiv-2408.00560","DOIUrl":null,"url":null,"abstract":"Laser-plasma accelerators represent a promising technology for future compact\naccelerating systems, enabling the acceleration of tens of pC to above $1\\,$GeV\nover just a few centimeters. Nonetheless, these devices currently lack the\nstability, beam quality and average current of conventional systems. While many\nefforts have focused on improving acceleration stability and quality, little\nprogress has been made in increasing the beam's average current, which is\nessential for future laser-plasma-based applications. In this paper, we\ninvestigate a laser-plasma acceleration regime aimed at increasing the beam\naverage current with energies up to few-MeVs, efficiently enhancing the beam\ncharge. We present experimental results on configurations that allow reaching\ncharges of $5-30\\,$nC and a maximum conversion efficiency of around $14\\,$%.\nThrough comprehensive Particle-In-Cell simulations, we interpret the\nexperimental results and present a detailed study on electron dynamics. From\nour analysis, we show that most electrons are not trapped in a plasma wave;\nrather, they experience ponderomotive acceleration. Thus, we prove the laser\npulse as the main driver of the particles' energy gain process.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-plasma accelerators represent a promising technology for future compact accelerating systems, enabling the acceleration of tens of pC to above $1\,$GeV over just a few centimeters. Nonetheless, these devices currently lack the stability, beam quality and average current of conventional systems. While many efforts have focused on improving acceleration stability and quality, little progress has been made in increasing the beam's average current, which is essential for future laser-plasma-based applications. In this paper, we investigate a laser-plasma acceleration regime aimed at increasing the beam average current with energies up to few-MeVs, efficiently enhancing the beam charge. We present experimental results on configurations that allow reaching charges of $5-30\,$nC and a maximum conversion efficiency of around $14\,$%. Through comprehensive Particle-In-Cell simulations, we interpret the experimental results and present a detailed study on electron dynamics. From our analysis, we show that most electrons are not trapped in a plasma wave; rather, they experience ponderomotive acceleration. Thus, we prove the laser pulse as the main driver of the particles' energy gain process.
欠密集等离子体中的高效电子深思动力加速
激光等离子体加速器是未来紧凑型加速系统的一项很有前途的技术,它能在几厘米的范围内将几十 pC 的能量加速到 1 美元以上。然而,这些设备目前还缺乏传统系统的稳定性、束流质量和平均电流。虽然许多努力都集中在提高加速稳定性和质量上,但在提高光束平均电流方面却进展甚微,而这对于未来基于激光等离子体的应用是至关重要的。在本文中,我们研究了一种激光等离子体加速机制,旨在提高能量高达数兆电子伏特的光束平均电流,从而有效增强光束充电。通过全面的粒子内电池模拟,我们解释了实验结果,并对电子动力学进行了详细研究。通过分析,我们发现大多数电子并没有被困在等离子体波中;相反,它们经历了动力加速。因此,我们证明激光脉冲是粒子能量增益过程的主要驱动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信