Jessica Enright, Duncan Lee, Kitty Meeks, William Pettersson, John Sylvester
{"title":"The Complexity of Finding and Enumerating Optimal Subgraphs to Represent Spatial Correlation","authors":"Jessica Enright, Duncan Lee, Kitty Meeks, William Pettersson, John Sylvester","doi":"10.1007/s00453-024-01256-x","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee et al. (Stat Comput 31(4):51, 2021. https://doi.org/10.1007/s11222-021-10025-7) recently demonstrated that improved inference for areal unit count data can be achieved by carrying out modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper, we address the computational complexity of the associated graph optimisation problem. We demonstrate that this optimisation problem is NP-hard; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem. The first is parameterised by both treewidth and maximum degree, while the second is parameterised by the maximum number of edges that can be removed and is also restricted to settings where the input graph has maximum degree three. Both of these algorithms solve not only the decision problem, but also enumerate all solutions with polynomial time precalculation, delay, and postcalculation time in respective restricted settings. For this problem, efficient enumeration allows the uncertainty in the spatial correlation to be utilised in the modelling. The first enumeration algorithm utilises dynamic programming on a tree decomposition of the input graph, and has polynomial time precalculation and linear delay if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but can output all solutions with FPT precalculation time and linear delay when the maximum number of edges that can be removed is taken as the parameter.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 10","pages":"3186 - 3230"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-024-01256-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01256-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee et al. (Stat Comput 31(4):51, 2021. https://doi.org/10.1007/s11222-021-10025-7) recently demonstrated that improved inference for areal unit count data can be achieved by carrying out modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper, we address the computational complexity of the associated graph optimisation problem. We demonstrate that this optimisation problem is NP-hard; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem. The first is parameterised by both treewidth and maximum degree, while the second is parameterised by the maximum number of edges that can be removed and is also restricted to settings where the input graph has maximum degree three. Both of these algorithms solve not only the decision problem, but also enumerate all solutions with polynomial time precalculation, delay, and postcalculation time in respective restricted settings. For this problem, efficient enumeration allows the uncertainty in the spatial correlation to be utilised in the modelling. The first enumeration algorithm utilises dynamic programming on a tree decomposition of the input graph, and has polynomial time precalculation and linear delay if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but can output all solutions with FPT precalculation time and linear delay when the maximum number of edges that can be removed is taken as the parameter.
期刊介绍:
Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential.
Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming.
In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.