Barlow Twins Deep Neural Network for Advanced 1D Drug-Target Interaction Prediction

Maximilian G. Schuh, Davide Boldini, Stephan A. Sieber
{"title":"Barlow Twins Deep Neural Network for Advanced 1D Drug-Target Interaction Prediction","authors":"Maximilian G. Schuh, Davide Boldini, Stephan A. Sieber","doi":"arxiv-2408.00040","DOIUrl":null,"url":null,"abstract":"Accurate prediction of drug-target interactions is critical for advancing\ndrug discovery. By reducing time and cost, machine learning and deep learning\ncan accelerate this discovery process. Our approach utilises the powerful\nBarlow Twins architecture for feature-extraction while considering the\nstructure of the target protein, achieving state-of-the-art predictive\nperformance against multiple established benchmarks. The use of gradient\nboosting machine as the underlying predictor ensures fast and efficient\npredictions without the need for large computational resources. In addition, we\nfurther benchmarked new baselines against existing methods. Together, these\ninnovations improve the efficiency and effectiveness of drug-target interaction\npredictions, providing robust tools for accelerating drug development and\ndeepening the understanding of molecular interactions.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of drug-target interactions is critical for advancing drug discovery. By reducing time and cost, machine learning and deep learning can accelerate this discovery process. Our approach utilises the powerful Barlow Twins architecture for feature-extraction while considering the structure of the target protein, achieving state-of-the-art predictive performance against multiple established benchmarks. The use of gradient boosting machine as the underlying predictor ensures fast and efficient predictions without the need for large computational resources. In addition, we further benchmarked new baselines against existing methods. Together, these innovations improve the efficiency and effectiveness of drug-target interaction predictions, providing robust tools for accelerating drug development and deepening the understanding of molecular interactions.
用于高级一维药物-靶点相互作用预测的巴洛双胞胎深度神经网络
准确预测药物与靶点的相互作用对于推进药物发现至关重要。通过减少时间和成本,机器学习和深度学习可以加速这一发现过程。我们的方法利用功能强大的巴洛双胞胎(Barlow Twins)架构进行特征提取,同时考虑目标蛋白质的结构,在多个既定基准测试中取得了最先进的预测性能。使用梯度提升机作为底层预测器,确保了快速高效的预测,而无需大量的计算资源。此外,我们还根据现有方法对新基线进行了进一步基准测试。这些创新共同提高了药物-靶点相互作用预测的效率和有效性,为加速药物开发和加深对分子相互作用的理解提供了强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信