Yu Cao, Yuanheng Wang, Habib ur Rehman, Yekini Shehu, Jen-Chih Yao
{"title":"Convergence Analysis of a New Forward-Reflected-Backward Algorithm for Four Operators Without Cocoercivity","authors":"Yu Cao, Yuanheng Wang, Habib ur Rehman, Yekini Shehu, Jen-Chih Yao","doi":"10.1007/s10957-024-02501-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a new splitting algorithm to find the zero of a monotone inclusion problem that features the sum of three maximal monotone operators and a Lipschitz continuous monotone operator in Hilbert spaces. We prove that the sequence of iterates generated by our proposed splitting algorithm converges weakly to the zero of the considered inclusion problem under mild conditions on the iterative parameters. Several splitting algorithms in the literature are recovered as special cases of our proposed algorithm. Another interesting feature of our algorithm is that one forward evaluation of the Lipschitz continuous monotone operator is utilized at each iteration. Numerical results are given to support the theoretical analysis.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02501-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a new splitting algorithm to find the zero of a monotone inclusion problem that features the sum of three maximal monotone operators and a Lipschitz continuous monotone operator in Hilbert spaces. We prove that the sequence of iterates generated by our proposed splitting algorithm converges weakly to the zero of the considered inclusion problem under mild conditions on the iterative parameters. Several splitting algorithms in the literature are recovered as special cases of our proposed algorithm. Another interesting feature of our algorithm is that one forward evaluation of the Lipschitz continuous monotone operator is utilized at each iteration. Numerical results are given to support the theoretical analysis.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.