{"title":"Tautological rings of Hilbert modular varieties","authors":"Simon Cooper","doi":"10.1007/s00209-024-03560-2","DOIUrl":null,"url":null,"abstract":"<p>In this note we compute the tautological ring of Hilbert modular varieties at an unramified prime. This is the first computation of the tautological ring of a non-compactified Shimura variety beyond the case of the Siegel modular variety <span>\\(\\mathcal {A}_{g}\\)</span>. While the method generalises that of van der Geer for <span>\\(\\mathcal {A}_{g}\\)</span>, there is an added difficulty in that the highest degree socle has <span>\\(d>1\\)</span> generators rather than 1. To deal with this we prove that the <i>d</i> cycles obtained by taking closures of codimension one Ekedahl–Oort strata are linearly independent. In contrast, in the case of <span>\\(\\mathcal {A}_{g}\\)</span> it suffices to prove that the class of the <i>p</i>-rank zero locus is non-zero. The limitations of this method for computing the tautological ring of other non-compactified Shimura varieties are demonstrated with an instructive example.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03560-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this note we compute the tautological ring of Hilbert modular varieties at an unramified prime. This is the first computation of the tautological ring of a non-compactified Shimura variety beyond the case of the Siegel modular variety \(\mathcal {A}_{g}\). While the method generalises that of van der Geer for \(\mathcal {A}_{g}\), there is an added difficulty in that the highest degree socle has \(d>1\) generators rather than 1. To deal with this we prove that the d cycles obtained by taking closures of codimension one Ekedahl–Oort strata are linearly independent. In contrast, in the case of \(\mathcal {A}_{g}\) it suffices to prove that the class of the p-rank zero locus is non-zero. The limitations of this method for computing the tautological ring of other non-compactified Shimura varieties are demonstrated with an instructive example.