Tautological rings of Hilbert modular varieties

IF 1 3区 数学 Q1 MATHEMATICS
Simon Cooper
{"title":"Tautological rings of Hilbert modular varieties","authors":"Simon Cooper","doi":"10.1007/s00209-024-03560-2","DOIUrl":null,"url":null,"abstract":"<p>In this note we compute the tautological ring of Hilbert modular varieties at an unramified prime. This is the first computation of the tautological ring of a non-compactified Shimura variety beyond the case of the Siegel modular variety <span>\\(\\mathcal {A}_{g}\\)</span>. While the method generalises that of van der Geer for <span>\\(\\mathcal {A}_{g}\\)</span>, there is an added difficulty in that the highest degree socle has <span>\\(d&gt;1\\)</span> generators rather than 1. To deal with this we prove that the <i>d</i> cycles obtained by taking closures of codimension one Ekedahl–Oort strata are linearly independent. In contrast, in the case of <span>\\(\\mathcal {A}_{g}\\)</span> it suffices to prove that the class of the <i>p</i>-rank zero locus is non-zero. The limitations of this method for computing the tautological ring of other non-compactified Shimura varieties are demonstrated with an instructive example.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03560-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we compute the tautological ring of Hilbert modular varieties at an unramified prime. This is the first computation of the tautological ring of a non-compactified Shimura variety beyond the case of the Siegel modular variety \(\mathcal {A}_{g}\). While the method generalises that of van der Geer for \(\mathcal {A}_{g}\), there is an added difficulty in that the highest degree socle has \(d>1\) generators rather than 1. To deal with this we prove that the d cycles obtained by taking closures of codimension one Ekedahl–Oort strata are linearly independent. In contrast, in the case of \(\mathcal {A}_{g}\) it suffices to prove that the class of the p-rank zero locus is non-zero. The limitations of this method for computing the tautological ring of other non-compactified Shimura varieties are demonstrated with an instructive example.

希尔伯特模态变的同调环
在这篇论文中,我们计算了未夯素的希尔伯特模块综的同调环。这是在西格尔模态变种 \(\mathcal {A}_{g}\) 的情况之外,第一次计算非紧密化希村变种的同调环。为了解决这个问题,我们证明了通过对标度为一的埃克达尔-奥尔特层(Ekedahl-Oort strata)进行闭合而得到的 d 个循环是线性独立的。相反,在 \(\mathcal {A}_{g}\) 的情况下,只需证明 p 级零位置的类是非零的即可。通过一个有启发性的例子,证明了这种方法在计算其他非紧密化志村变分的同调环时的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信