Gray (skew) multicategories: double and Gray-categorical cases

Bojana Femić
{"title":"Gray (skew) multicategories: double and Gray-categorical cases","authors":"Bojana Femić","doi":"arxiv-2408.00561","DOIUrl":null,"url":null,"abstract":"We construct in a unifying way skew-multicategories and multicategories of\ndouble and Gray-categories that we call Gray (skew) multicategories. We study\ntheir different versions depending on the types of functors and higher\ntransforms. We construct Gray type products by generators and relations and\nprove that Gray skew-multicategories are closed and representable on one side,\nand that the Gray multicaticategories taken with the strict type of functors\nare representable. We conclude that the categories of double and\nGray-categories with strict functors underlying Gray (skew) multicategories are\nskew monoidal, respectively monoidal, depending on the type of the inner-hom\nand product considered. The described Gray (skew) multicategories we see as\nprototypes of general Gray (skew) multicategories, which correspond to (higher)\ncategories of higher dimensional internal and enriched categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"215 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct in a unifying way skew-multicategories and multicategories of double and Gray-categories that we call Gray (skew) multicategories. We study their different versions depending on the types of functors and higher transforms. We construct Gray type products by generators and relations and prove that Gray skew-multicategories are closed and representable on one side, and that the Gray multicaticategories taken with the strict type of functors are representable. We conclude that the categories of double and Gray-categories with strict functors underlying Gray (skew) multicategories are skew monoidal, respectively monoidal, depending on the type of the inner-hom and product considered. The described Gray (skew) multicategories we see as prototypes of general Gray (skew) multicategories, which correspond to (higher) categories of higher dimensional internal and enriched categories.
灰色(倾斜)多类别:双重和灰色类别情况
我们以统一的方式构建了偏斜多范畴和双范畴与灰色范畴的多范畴,我们称之为灰色(偏斜)多范畴。我们根据函数和高变换的类型研究它们的不同版本。我们通过生成器和关系来构造灰色类型积,并证明灰色偏斜多范畴是封闭的,在一边是可表示的,而且用严格类型的函数来表示的灰色多范畴是可表示的。我们得出结论说,灰色(偏斜)多范畴底层的具有严格函数的双范畴和灰色范畴,根据所考虑的内同乘(inner-homand product)的类型,分别是偏斜单义范畴和单义范畴。我们把所描述的灰色(偏斜)多范畴看作是一般灰色(偏斜)多范畴的原型,而一般灰色(偏斜)多范畴对应于高维内范畴和丰富范畴的(高)范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信