Parameter optimization for ultrasonic-assisted grinding of γ-TiAl intermetallics: A gray relational analysis approach with surface integrity evaluation
IF 3.6 4区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Parameter optimization for ultrasonic-assisted grinding of γ-TiAl intermetallics: A gray relational analysis approach with surface integrity evaluation","authors":"Song Yang, Guangjin Zhang, Guoqing Xiao","doi":"10.1515/rams-2024-0045","DOIUrl":null,"url":null,"abstract":"The processing of γ-TiAl intermetallic compound (Ti–45Al–2Mn–2Nb) is essential for manufacturing aircraft engine components, known for their challenging machinability. This study delved into the machining performance of γ-TiAl intermetallic compound through ultrasonically assisted grinding experiments. Various grinding parameters, such as wheel rotation speed (<jats:italic>v</jats:italic> <jats:sub>s</jats:sub>), feed rate (<jats:italic>v</jats:italic> <jats:sub>w</jats:sub>), depth of grinding (<jats:italic>a</jats:italic> <jats:sub>p</jats:sub>), and ultrasonic amplitude (<jats:italic>A</jats:italic>), were investigated to understand their effects on grinding forces, temperatures, and surface quality. Gray relational analysis (GRA) and analysis of variance were used to analyze experimental data and ascertain the optimal machining parameters for ultrasonically assisted grinding of γ-TiAl intermetallic compound. Additionally, post-processing surface integrity, encompassing surface roughness, morphology, and residual stresses, was evaluated. The optimal grinding parameter combination was determined as <jats:italic>F</jats:italic> <jats:sub>n</jats:sub> = 3.22 N, <jats:italic>F</jats:italic> <jats:sub>t</jats:sub> = 1.08 N, and <jats:italic>T</jats:italic> = 174°C through GRA. Under the selected machining conditions, the depth of cut exerted the most significant influence on the grinding force and temperature, while the effect of wheel speed was the weakest. The surface roughness (Ra) of the workpiece increased with increasing feed rate and depth of the cut but decreased gradually with increasing wheel speed. Upon applying ultrasonic vibration, there was a notable decrease in surface roughness, ranging from 20.12 to 7.67%. However, the increase in the wheel speed, depth of cut, and feed rate inhibited the reduction of roughness due to ultrasonic vibration. Ultrasonic vibration effectively reduced the profile height of the workpiece surface, with a maximum reduction of 1.94 μm within the selected range. Nonetheless, as the wheel speed, depth of cut, and feed rate increased, the effectiveness of this reduction gradually diminished.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"16 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2024-0045","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The processing of γ-TiAl intermetallic compound (Ti–45Al–2Mn–2Nb) is essential for manufacturing aircraft engine components, known for their challenging machinability. This study delved into the machining performance of γ-TiAl intermetallic compound through ultrasonically assisted grinding experiments. Various grinding parameters, such as wheel rotation speed (vs), feed rate (vw), depth of grinding (ap), and ultrasonic amplitude (A), were investigated to understand their effects on grinding forces, temperatures, and surface quality. Gray relational analysis (GRA) and analysis of variance were used to analyze experimental data and ascertain the optimal machining parameters for ultrasonically assisted grinding of γ-TiAl intermetallic compound. Additionally, post-processing surface integrity, encompassing surface roughness, morphology, and residual stresses, was evaluated. The optimal grinding parameter combination was determined as Fn = 3.22 N, Ft = 1.08 N, and T = 174°C through GRA. Under the selected machining conditions, the depth of cut exerted the most significant influence on the grinding force and temperature, while the effect of wheel speed was the weakest. The surface roughness (Ra) of the workpiece increased with increasing feed rate and depth of the cut but decreased gradually with increasing wheel speed. Upon applying ultrasonic vibration, there was a notable decrease in surface roughness, ranging from 20.12 to 7.67%. However, the increase in the wheel speed, depth of cut, and feed rate inhibited the reduction of roughness due to ultrasonic vibration. Ultrasonic vibration effectively reduced the profile height of the workpiece surface, with a maximum reduction of 1.94 μm within the selected range. Nonetheless, as the wheel speed, depth of cut, and feed rate increased, the effectiveness of this reduction gradually diminished.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.