{"title":"Higher-order Poincaré sphere multiplexed metasurface holography for optical information encryption","authors":"Hairong He, Meiyu Peng, Guangtao Cao, Yanbei Li, Hui Liu, Hui Yang","doi":"10.1016/j.optlastec.2024.111555","DOIUrl":null,"url":null,"abstract":"Metasurface-enabled holography holds vital applications in various fields such as optical display, optical data storage, and optical encryption. Despite the rapid development of multiplexed metaholograms through exploiting different physical dimensions of photons such as polarization, amplitude, wavelength, and angular momentum, the multiplexing channel is approaching its limit due to the almost exhausted existing physical dimensions of photons. Here we demonstrate the higher-order Poincaré sphere (HOPS)-multiplexed holography by exploiting vector beam on the HOPS as a new physical dimension for holographic multiplexing. The underlying mechanism relies on independent control of phase shifts in two spin eigenstates to modulate the vector beam induced fields. As proof of concept, we demonstrate a -hologram with four multiplexing channels that exhibit independent holographic images when the incident beams are on the −2nd order, −1st order, 1st order and 2nd order HOPS, respectively. Moreover, leveraging the unique characteristic of HOPS-multiplexed holography, high-security optical anti-counterfeiting and information encryption have been demonstrated as well. Our work harnesses the previously inaccessible vector beams as independent information carries for holographic multiplexing, promising to potential applications in optical display and optical encryption.","PeriodicalId":19597,"journal":{"name":"Optics & Laser Technology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Laser Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.optlastec.2024.111555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurface-enabled holography holds vital applications in various fields such as optical display, optical data storage, and optical encryption. Despite the rapid development of multiplexed metaholograms through exploiting different physical dimensions of photons such as polarization, amplitude, wavelength, and angular momentum, the multiplexing channel is approaching its limit due to the almost exhausted existing physical dimensions of photons. Here we demonstrate the higher-order Poincaré sphere (HOPS)-multiplexed holography by exploiting vector beam on the HOPS as a new physical dimension for holographic multiplexing. The underlying mechanism relies on independent control of phase shifts in two spin eigenstates to modulate the vector beam induced fields. As proof of concept, we demonstrate a -hologram with four multiplexing channels that exhibit independent holographic images when the incident beams are on the −2nd order, −1st order, 1st order and 2nd order HOPS, respectively. Moreover, leveraging the unique characteristic of HOPS-multiplexed holography, high-security optical anti-counterfeiting and information encryption have been demonstrated as well. Our work harnesses the previously inaccessible vector beams as independent information carries for holographic multiplexing, promising to potential applications in optical display and optical encryption.