Ke Wang;Yixun Xue;Mohammad Shahidehpour;Xinyue Chang;Zening Li;Yue Zhou;Hongbin Sun
{"title":"Resilience-Oriented Two-Stage Restoration Considering Coordinated Maintenance and Reconfiguration in Integrated Power Distribution and Heating Systems","authors":"Ke Wang;Yixun Xue;Mohammad Shahidehpour;Xinyue Chang;Zening Li;Yue Zhou;Hongbin Sun","doi":"10.1109/TSTE.2024.3434995","DOIUrl":null,"url":null,"abstract":"The inherent linkage between a power distribution system (PDS) and a district heating system (DHS) necessitates coordinated load restoration after natural disasters. To guarantee optimal load restoration during a recovery process, a coordinated dispatch strategy of the maintenance crew for the PDS/DHS considering the optimal reconfiguration of their respective networks is proposed in this paper. The proposed solution focuses on the intricate mutual interaction of the DHS and PDS and coordinates the fault isolation and service restoration stages. The proposed optimization is modeled as a mixed-integer second-order cone problem (MISOCP), which contains numerous integer variables. To lessen the computational burden, a two-stage acceleration algorithm is proposed, which divides the solution procedure into two stages based on two types of integer variables: load status variables and variables associated with the maintenance path and network topology. Then, the acceleration principles are proposed to determine the load status variables. The effectiveness and accuracy of the proposed model are validated by extensive cases, which demonstrate the performance of the coordinated maintenance and reconfiguration in integrated energy systems for fault recovery.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"124-137"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10620409/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The inherent linkage between a power distribution system (PDS) and a district heating system (DHS) necessitates coordinated load restoration after natural disasters. To guarantee optimal load restoration during a recovery process, a coordinated dispatch strategy of the maintenance crew for the PDS/DHS considering the optimal reconfiguration of their respective networks is proposed in this paper. The proposed solution focuses on the intricate mutual interaction of the DHS and PDS and coordinates the fault isolation and service restoration stages. The proposed optimization is modeled as a mixed-integer second-order cone problem (MISOCP), which contains numerous integer variables. To lessen the computational burden, a two-stage acceleration algorithm is proposed, which divides the solution procedure into two stages based on two types of integer variables: load status variables and variables associated with the maintenance path and network topology. Then, the acceleration principles are proposed to determine the load status variables. The effectiveness and accuracy of the proposed model are validated by extensive cases, which demonstrate the performance of the coordinated maintenance and reconfiguration in integrated energy systems for fault recovery.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.