Accurate and Robust Wide-Range Luminescent Microthermometer Based on ALD-Encapsulated Ga2O3:Cr DBR Microcavities

Manuel Alonso-Orts, Ruben J. T. Neelissen, Daniel Carrasco, Marco Schowalter, Andreas Rosenauer, Emilio Nogales, Bianchi Méndez, Martin Eickhoff
{"title":"Accurate and Robust Wide-Range Luminescent Microthermometer Based on ALD-Encapsulated Ga2O3:Cr DBR Microcavities","authors":"Manuel Alonso-Orts, Ruben J. T. Neelissen, Daniel Carrasco, Marco Schowalter, Andreas Rosenauer, Emilio Nogales, Bianchi Méndez, Martin Eickhoff","doi":"10.1002/admt.202400881","DOIUrl":null,"url":null,"abstract":"The high spatial resolution and contactless optical readout capabilities of luminescence thermometry offer significant advantages in numerous fields, including biomedicine, space exploration and optoelectronics. In addition, robust, reproducible, and accurate temperature measurements are essential in these areas. The ultra-wide band gap semiconductor material Ga<sub>2</sub>O<sub>3</sub> is a suitable host for optical sensing in harsh environments due to its high stability. In this work, the thermometric operation of Ga<sub>2</sub>O<sub>3</sub>:Cr-based microcavities are evaluated. They are designed as follows: Ga<sub>2</sub>O<sub>3</sub>:Cr microwires are encapsulated in multilayers fabricated by atomic layer deposition (ALD), which act as both Bragg reflectors and protective layers for the thermometric sensor. Prior to the ALD encapsulation step, focused ion beam carved trenches at the microwire ends are necessary to accommodate the multilayer coating. The structural and optical properties of the devices are assessed experimentally, analytically and by simulations. The developed microthermometers can be easily calibrated using a cubic polynomial for the temperature-dependent resonant peak position shift. A better than 0.5 °C temperature resolution and accuracy for temperatures above −80 °C is demonstrated. Additionally, the devices show robustness against excitation laser densities of at least 34 W mm<sup>−2</sup>, can operate at temperatures up to 600 °C and remain functional in liquids.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The high spatial resolution and contactless optical readout capabilities of luminescence thermometry offer significant advantages in numerous fields, including biomedicine, space exploration and optoelectronics. In addition, robust, reproducible, and accurate temperature measurements are essential in these areas. The ultra-wide band gap semiconductor material Ga2O3 is a suitable host for optical sensing in harsh environments due to its high stability. In this work, the thermometric operation of Ga2O3:Cr-based microcavities are evaluated. They are designed as follows: Ga2O3:Cr microwires are encapsulated in multilayers fabricated by atomic layer deposition (ALD), which act as both Bragg reflectors and protective layers for the thermometric sensor. Prior to the ALD encapsulation step, focused ion beam carved trenches at the microwire ends are necessary to accommodate the multilayer coating. The structural and optical properties of the devices are assessed experimentally, analytically and by simulations. The developed microthermometers can be easily calibrated using a cubic polynomial for the temperature-dependent resonant peak position shift. A better than 0.5 °C temperature resolution and accuracy for temperatures above −80 °C is demonstrated. Additionally, the devices show robustness against excitation laser densities of at least 34 W mm−2, can operate at temperatures up to 600 °C and remain functional in liquids.

Abstract Image

基于 ALD 封装 Ga2O3:Cr DBR 微腔的精确、稳健的宽量程发光微温计
发光测温仪的高空间分辨率和非接触式光学读出功能为生物医学、太空探索和光电子学等众多领域提供了显著优势。此外,稳健、可重现和精确的温度测量在这些领域也至关重要。超宽带隙半导体材料 Ga2O3 具有高稳定性,适合在恶劣环境中进行光学传感。在这项工作中,对基于 Ga2O3:Cr 的微腔的测温操作进行了评估。它们的设计如下:Ga2O3:Cr微线封装在通过原子层沉积(ALD)制造的多层膜中,这些多层膜既是布拉格反射器,又是测温传感器的保护层。在进行 ALD 封装之前,必须在微线两端用聚焦离子束刻出沟槽,以容纳多层涂层。通过实验、分析和模拟,对设备的结构和光学特性进行了评估。所开发的微温度计可使用三次多项式轻松校准随温度变化的共振峰位置偏移。温度分辨率和精确度优于 0.5 °C,适用于 -80 °C 以上的温度。此外,该装置在激发激光密度至少为 34 W mm-2 的情况下也表现出很强的稳定性,可在高达 600 °C 的温度下工作,并能在液体中保持功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信