3D Variational Inference-Based Double-Difference Seismic Tomography Method and Application to the SAFOD Site, California

Hao Yang, Xin Zhang, Haijiang Zhang
{"title":"3D Variational Inference-Based Double-Difference Seismic Tomography Method and Application to the SAFOD Site, California","authors":"Hao Yang, Xin Zhang, Haijiang Zhang","doi":"arxiv-2407.21405","DOIUrl":null,"url":null,"abstract":"Seismic tomography is a crucial technique used to image subsurface structures\nat various scales, accomplished by solving a nonlinear and nonunique inverse\nproblem. It is therefore important to quantify velocity model uncertainties for\naccurate earthquake locations and geological interpretations. Monte Carlo\nsampling techniques are usually used for this purpose, but those methods are\ncomputationally intensive, especially for large datasets or high-dimensional\nparameter spaces. In comparison, Bayesian variational inference provides a more\nefficient alternative by delivering probabilistic solutions through\noptimization. The method has been proven to be efficient in 2D tomographic\nproblems. In this study, we apply variational inference to solve 3D\ndouble-difference (DD) seismic tomographic system using both absolute and\ndifferential travel time data. Synthetic tests demonstrate that the new method\ncan produce more accurate velocity models than the original DD tomography\nmethod by avoiding regularization constraints, and at the same time provides\nmore reliable uncertainty estimates. Compared to traditional checkerboard\nresolution tests, the resulting uncertainty estimates measure more accurately\nthe reliability of the solution. We further apply the new method to data\nrecorded by a local dense seismic array around the San Andreas Fault\nObservatory at Depth (SAFOD) site along the San Andreas Fault (SAF) at\nParkfield. Similar to other researches, the obtained velocity models show\nsignificant velocity contrasts across the fault. More importantly, the new\nmethod produces velocity uncertainties of less than 0.34 km/s for Vp and 0.23\nkm/s for Vs. We therefore conclude that variational inference provides a\npowerful and efficient tool for solving 3D seismic tomographic problems and\nquantifying model uncertainties.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic tomography is a crucial technique used to image subsurface structures at various scales, accomplished by solving a nonlinear and nonunique inverse problem. It is therefore important to quantify velocity model uncertainties for accurate earthquake locations and geological interpretations. Monte Carlo sampling techniques are usually used for this purpose, but those methods are computationally intensive, especially for large datasets or high-dimensional parameter spaces. In comparison, Bayesian variational inference provides a more efficient alternative by delivering probabilistic solutions through optimization. The method has been proven to be efficient in 2D tomographic problems. In this study, we apply variational inference to solve 3D double-difference (DD) seismic tomographic system using both absolute and differential travel time data. Synthetic tests demonstrate that the new method can produce more accurate velocity models than the original DD tomography method by avoiding regularization constraints, and at the same time provides more reliable uncertainty estimates. Compared to traditional checkerboard resolution tests, the resulting uncertainty estimates measure more accurately the reliability of the solution. We further apply the new method to data recorded by a local dense seismic array around the San Andreas Fault Observatory at Depth (SAFOD) site along the San Andreas Fault (SAF) at Parkfield. Similar to other researches, the obtained velocity models show significant velocity contrasts across the fault. More importantly, the new method produces velocity uncertainties of less than 0.34 km/s for Vp and 0.23 km/s for Vs. We therefore conclude that variational inference provides a powerful and efficient tool for solving 3D seismic tomographic problems and quantifying model uncertainties.
基于三维变分推理的双差分地震层析成像方法及其在加利福尼亚州 SAFOD 现场的应用
地震层析成像技术是通过求解一个非线性和非唯一的逆问题,对不同尺度的地下结构进行成像的重要技术。因此,必须量化速度模型的不确定性,以获得准确的地震定位和地质解释。蒙特卡洛取样技术通常用于此目的,但这些方法的计算量很大,尤其是对于大型数据集或高维参数空间。相比之下,贝叶斯变异推理通过优化提供概率解决方案,提供了一种更高效的替代方法。事实证明,该方法在二维断层成像问题中非常有效。在本研究中,我们将变分推理应用于使用绝对和差分旅行时间数据求解三维双差分(DD)地震层析系统。合成测试表明,新方法避免了正则化约束,能够生成比原始 DD 地震层析成像方法更精确的速度模型,同时提供更可靠的不确定性估计。与传统的棋盘分辨率测试相比,新方法得出的不确定性估计值能更准确地衡量解的可靠性。我们进一步将新方法应用于帕克菲尔德圣安德烈亚斯断层(SAF)沿线圣安德烈亚斯断层深度观测站(SAFOD)周围的局部密集地震阵列记录的数据。与其他研究类似,所获得的速度模型显示了断层上明显的速度对比。因此,我们得出结论,变分推理为解决三维地震层析成像问题和量化模型不确定性提供了一个强大而高效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信