Ill-posedness for the Camassa–Holm equation in \(B_{p,1}^{1}\cap C^{0,1}\)

IF 1.4 3区 数学 Q1 MATHEMATICS
Jinlu Li, Yanghai Yu, Yingying Guo, Weipeng Zhu
{"title":"Ill-posedness for the Camassa–Holm equation in \\(B_{p,1}^{1}\\cap C^{0,1}\\)","authors":"Jinlu Li,&nbsp;Yanghai Yu,&nbsp;Yingying Guo,&nbsp;Weipeng Zhu","doi":"10.1007/s13324-024-00956-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the Cauchy problem for the Camassa–Holm equation on the real line. By presenting a new construction of initial data, we show that the solution map in the smaller space <span>\\(B_{p,1}^{1}\\cap C^{0,1}\\)</span> with <span>\\(p\\in (2,\\infty ]\\)</span> is discontinuous at origin. More precisely, the initial data in <span>\\(B_{p,1}^{1}\\cap C^{0,1}\\)</span> can guarantee that the Camassa–Holm equation has a unique local solution in <span>\\(W^{1,p}\\cap C^{0,1}\\)</span>, however, this solution is instable and can have an inflation in <span>\\(B_{p,1}^{1}\\cap C^{0,1}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00956-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Cauchy problem for the Camassa–Holm equation on the real line. By presenting a new construction of initial data, we show that the solution map in the smaller space \(B_{p,1}^{1}\cap C^{0,1}\) with \(p\in (2,\infty ]\) is discontinuous at origin. More precisely, the initial data in \(B_{p,1}^{1}\cap C^{0,1}\) can guarantee that the Camassa–Holm equation has a unique local solution in \(W^{1,p}\cap C^{0,1}\), however, this solution is instable and can have an inflation in \(B_{p,1}^{1}\cap C^{0,1}\).

$$B_{p,1}^{1}\cap C^{0,1}$$ 中的卡马萨-霍尔姆方程的失摆问题
本文研究了实线上卡马萨-霍姆方程的考奇问题。通过提出一种新的初始数据构造,我们证明了在\(B_{p,1}^{1}\cap C^{0,1}\) with \(p\in (2,\infty ]\) 的较小空间中的解映射在原点是不连续的。更确切地说,在(B_{p,1}^{1}\cap C^{0,1}\)中的初始数据可以保证卡马萨-霍尔姆方程在(W^{1,p}\cap C^{0,1}\)中有一个唯一的局部解,然而,这个解是不稳定的,在(B_{p,1}^{1}\cap C^{0,1}\)中会有膨胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信